Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (9): 87-93    DOI: 10.11868/j.issn.1001-4381.2019.000866
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响
吕彦龙1,*(), 贺建超1, 侯金保1, 张博贤2
1 中国航空制造技术研究院 航空焊接与连接技术航空科技重点实验室, 北京 100024
2 大连交通大学 材料科学与工程学院, 辽宁 大连 116028
Effect of heat treatment on microstructure and mechanical properties of TiAl/Ti2AlNb joint by spark plasma diffusion bonding
Yan-long LYU1,*(), Jian-chao HE1, Jin-bao HOU1, Bo-xian ZHANG2
1 Aeronautical Key Laboratory for Welding and Joining Technologies, AVIC Manufacturing Technology Institute, Beijing 100024, China
2 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning, China
全文: PDF(16134 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用放电等离子扩散连接方法,实现了TiAl/Ti2AlNb合金扩散连接,对焊后的接头进行不同温度的热处理,分析热处理后接头显微组织,并检测接头抗拉强度和显微硬度。结果表明:热处理后Ti2AlNb母材、TiAl母材和界面处显微形貌无明显变化;Ti2AlNb热影响区发生B2相向O相转变,由于针状O相的析出,热影响区的显微硬度较焊态显著增加。随着热处理温度的升高,Ti2AlNb热影响区的显微硬度逐渐减小,接头的室温抗拉强度逐渐增加。当热处理温度为900℃时,接头抗拉强度最大为376 MPa。热处理后接头的断裂方式为脆性断裂。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕彦龙
贺建超
侯金保
张博贤
关键词 放电等离子扩散焊TiAlTi2AlNb抗拉强度显微硬度    
Abstract

TiAl/Ti2AlNb dissimilar alloys were successfully bonded together by spark plasma diffusion bonding. The joints were subjected to post-weld heat treatment at different temperatures. The microstructure of the welded joint was analyzed and the tensile strength and microhardness of the joint were tested. The results indicate that after heat treatment, the microstructure of Ti2AlNb base metal, TiAl base metal and interface has no obvious change. In the Ti2AlNb heat affected zone(HAZ), most B2 phase gradually turns into O phase, due to the precipitation of acicular O phase, the microhardness increases significantly compared to as welded condition. With the increase of heat treatment temperature, the microhardness of the Ti2AlNb HAZ gradually decreases, meanwhile, the tensile strength of the joint at room temperature shows an evident increase compared to as welded. The maximum tensile strength of the joint reaches 376 MPa at heat treatment temperature of 900℃. After heat treatment, the fracture mode of the joint is brittle fracture.

Key wordsspark plasma diffusion bonding    TiAl    Ti2AlNb    tensile strength    microhardness
收稿日期: 2019-09-22      出版日期: 2021-09-17
中图分类号:  TG456  
基金资助:国家自然科学基金项目(91860115)
通讯作者: 吕彦龙     E-mail: lvyanlong0210@126.com
作者简介: 吕彦龙(1993-), 男, 工程师, 研究方向为金属材料的钎焊、扩散焊, 联系地址: 北京市朝阳区东军庄1号中国航空制造技术研究院(100024), E-mail: lvyanlong0210@126.com
引用本文:   
吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
Yan-long LYU, Jian-chao HE, Jin-bao HOU, Bo-xian ZHANG. Effect of heat treatment on microstructure and mechanical properties of TiAl/Ti2AlNb joint by spark plasma diffusion bonding. Journal of Materials Engineering, 2021, 49(9): 87-93.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000866      或      http://jme.biam.ac.cn/CN/Y2021/V49/I9/87
Fig.1  母材原始显微组织
(a)TiAl;(b)Ti2AlNb
Fig.2  放电等离子焊接示意图
Fig.3  焊态和不同温度热处理状态下接头的金相显微组织
(a)焊态; (b)750 ℃; (c)800 ℃; (d)850 ℃; (e)900 ℃
Fig.4  850 ℃热处理条件下接头SEM显微组织
Zone Al Ti Cr Nb
A 22.12 50.87 0 27.01
B 22.82 50.39 0.03 26.76
C 26.71 48.36 0.18 24.75
D 30.80 52.16 0.65 16.39
Table 1  图 4各区域EDS分析结果(原子分数/%)
Fig.5  不同热处理温度下接头SEM显微组织
(a)800 ℃; (b)900 ℃
Fig.6  不同状态下焊接接头显微硬度
Sample UTS/MPa Failed location
As welded 300 Interface
750 ℃/3 h 327 Interface
800 ℃/3 h 368 Interface
850 ℃/3 h 374 Interface
900 ℃/3 h 376 Interface
Table 2  不同状态下接头的室温抗拉强度
Fig.7  接头断口的截面形貌
(a)焊态;(b)800 ℃热处理;(c)900 ℃热处理
Fig.8  不同状态下断口的SEM形貌
(a)焊态;(b)800 ℃热处理;(c)900 ℃热处理
1 LORIA E A . Gamma titanium aluminides as prospective structural materials[J]. Intermetallics, 2000, 8 (9/11): 1339- 1345.
2 WEI H E , TANG H P , LIU H Y , et al. Microstructure and tensile properties of containerless near-isothermally forged TiAl alloys[J]. Transactions of Nonferrous Metals Society of China, 2011, 21 (12): 2605- 2609.
doi: 10.1016/S1003-6326(11)61098-4
3 KONG F , CHEN Y , ZHANG D , et al. High temperature deformation behavior of Ti-46Al-2Cr-4Nb-0.2Y alloy[J]. Materials Science and Engineering: A, 2012, 539 (2): 107- 114.
4 司玉锋, 孟丽华, 陈玉勇. Ti2AlNb基合金的研究进展[J]. 宇航材料工艺, 2006, 36 (3): 10- 13.
doi: 10.3969/j.issn.1007-2330.2006.03.003
4 SI Y F , MENG L H , CHEN Y Y . Research development of Ti2AlNb-based alloy[J]. Aerospace Materials & Technology, 2006, 36 (3): 10- 13.
doi: 10.3969/j.issn.1007-2330.2006.03.003
5 WANG Y H , LIN J P , HE Y H , et al. Microstructure and mechanical properties of high Nb containing TiAl alloys by reactive hot pressing[J]. Journal of Alloys and Compounds, 2008, 461 (1/2): 367- 372.
6 WANG Y H , LIN J P , HE Y H , et al. Microstructures and mechanical properties of Ti-45Al-8.5Nb-(W, B, Y) alloy by SPS-HIP route[J]. Materials Science and Engineering: A, 2008, 489 (1): 55- 61.
7 ZHANG S Z , KONG F T , CHEN Y Y , et al. Phase transformation and microstructure evolution of differently processed Ti-45Al-9Nb-Y alloy[J]. Intermetallics, 2012, 31 (4): 208- 216.
8 静永娟, 李晓红, 侯金保, 等. Ti3Al基合金TLP扩散连接界面的组织演变[J]. 焊接学报, 2013, 34 (2): 71- 74.
8 JING Y J , LI X H , HOU J B , et al. Microstructure evolution of TLP bonding interface for Ti3Al based alloy[J]. Transactions of the China Welding Institution, 2013, 34 (2): 71- 74.
9 刘加奇. TiAl/Ti2AlNb合金钎焊工艺与机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
9 LIU J Q. Research on brazing process and mechanism of TiAl/Ti2AlNb alloy joint[D]. Harbin: Harbin Institute of Technology, 2016.
10 CAO J , DAI X Y , LIU J Q , et al. Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti-27Co eutectic filler metal[J]. Materials & Design, 2017, 121, 176- 184.
11 任海水, 熊华平, 陈波, 等. 以Ti-Zr-Cu-Ni-Fe合金为中间层的Ti3Al/TiAl瞬间液相扩散连接[J]. 焊接学报, 2016, 37 (3): 106- 110.
11 REN H S , XIONG H P , CHEN B , et al. Transient liquid phase diffusion bonding of Ti3Al/TiAl joint using a Ti-Zr-Cu-Ni-Fe interlayer[J]. Transactions of the China Welding Institution, 2016, 37 (3): 106- 110.
12 REN H S , XIONG H P , PANG S J , et al. Microstructures and mechanical properties of transient liquid-phase diffusion-bonded Ti3Al/TiAl joints with Ti-Zr-Cu-Ni interlayer[J]. Metallurgical and Materials Transactions A, 2016, 47 (4): 1668- 1676.
doi: 10.1007/s11661-015-3310-9
13 吕彦龙, 贺建超, 侯金保. TiAl/Ti2AlNb放电等离子扩散接头的组织性能研究[J]. 热加工工艺, 2018, 47 (19): 72- 76.
13 LYU Y L , HE J C , HOU J B . Microstructure and properties of TiAl/Ti2AlNb spark plasma diffusion bonding joint[J]. Hot Working Technology, 2018, 47 (19): 72- 76.
14 吴波, 沈剑韵, 商顺利, 等. Ti-22Al-27Nb合金平衡相结构预测[J]. 稀有金属, 2002, 26 (1): 12- 14.
14 WU B , SHEN J Y , SHANG S L , et al. Prediction of phase equilibrium in Ti-22Al-27Nb alloy[J]. Chinese Journal of Rare Metals, 2002, 26 (1): 12- 14.
15 张永刚. 金属间化合物结构材料[M]. 北京: 国防工业出版社, 2001: 795- 797.
15 ZHANG Y G . Intermetallic compound structural material[M]. Beijing: National Defense Industry Press, 2001: 795- 797.
16 CHEN X , XIE F Q , MA T J , et al. Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy[J]. Journal of Alloys and Compounds, 2015, 646, 490- 496.
doi: 10.1016/j.jallcom.2015.05.198
17 WANG W , ZENG W D , XUE C , et al. Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti-22Al-25Nb (at.%) orthorhombic alloy[J]. Intermetallics, 2014, 45, 29- 37.
doi: 10.1016/j.intermet.2013.09.011
[1] 王露, 陈雷雷, 徐凯, 娄明, 杜玉洁, 毛勇, 常可可. 前过渡族元素X对TiAlXN涂层结构与性能的作用[J]. 材料工程, 2022, 50(7): 69-79.
[2] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[3] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[4] 邵琦, 吴晓玉, 张玲, 皮宗力, 李英龙. 连续等通道转角挤压对Al-Ti-C合金组织与性能的影响[J]. 材料工程, 2022, 50(3): 115-121.
[5] 余晖, 任军超, 杨鑫, 郭舒龙, 余炜, 冯建航, 殷福星, 辛光善. Zn层添加AZ31/7075合金复合成形工艺及组织与性能研究[J]. 材料工程, 2022, 50(3): 157-165.
[6] 张明达, 刘英飒, 郑真, 曹京霞, 黄旭. 合金元素复合化对Ti2AlNb合金高温抗氧化性能影响[J]. 材料工程, 2022, 50(1): 93-100.
[7] 谢小青, 李轩, 吕威, 来升, 刘益, 李建军, 谢文玲. Co对Ti45Al-8Nb-0.3Y合金组织结构和高温抗氧化性能的影响[J]. 材料工程, 2022, 50(1): 101-108.
[8] 张勋业, 张秋光, 林盼盼, 王春月, 何鹏, 林铁松, 龙伟民. Ti2AlNb合金与钛基复合材料的低温固相扩散连接机理[J]. 材料工程, 2021, 49(1): 95-103.
[9] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[10] 刘成, 彭志方, 彭芳芳, 陈方玉, 刘省. P92钢625℃持久实验过程中试件特征部位相参量的变化[J]. 材料工程, 2020, 48(3): 98-104.
[11] 赵枢明, 薛铠华, 杨通, 张雪, 姚山. 烧结颈分布对3D打印覆膜Al2O3零件强度的影响[J]. 材料工程, 2019, 47(8): 132-140.
[12] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[13] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[14] 范爱一, 李慧中, 梁霄鹏, 陈永辉, 齐叶龙. 热变形Ti-45Al-7Nb-0.3W合金的显微组织与力学性能[J]. 材料工程, 2018, 46(7): 121-126.
[15] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn