Please wait a minute...
 
材料工程  2013, Vol. Issue (2): 29-34    DOI: 10.3969/j.issn.1001-4381.2013.02.006
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
镁基多孔材料准静态压缩行为与吸能特性研究
郝刚领1,2, 韩福生2, 王伟国1
1. 延安大学 物理与电子信息学院 材料物理研究所, 陕西 延安 716000;
2. 中国科学院固体物理研究所 材料物理重点实验室,合肥 230031
The Quasi-static Compressive Behavior and Energy Absorption Properties of Mg-based Porous Materials
HAO Gang-ling1,2, HAN Fu-sheng2, WANG Wei-guo1
1. Institute of Materials Physics, College of Physics and Electronic Information, Yan'an University, Yan'an 716000, Shaanxi, China;
2. Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
全文: PDF(5203 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于可去除填充颗粒的粉末冶金技术制备了孔隙率在40%~80%,孔径在1~2mm内变化的多孔镁和多孔AZ91D镁合金,并系统考察了材料的准静压压缩行为和吸能特性。结果发现,镁基多孔材料的压缩应力-应变曲线由线性弹性区、平台和致密化区域组成,但曲线锯齿状波动较大,表明材料的脆性断裂机制。压缩屈服强度与相对密度的关系可通过Gibson-Ashby模型来理解,但屈服强度对孔径的依赖性较低。吸能本领随相对密度的增加而增加,相同条件下,多孔AZ91D镁合金的吸能本领高于多孔镁,多孔镁的吸能效率则高于多孔AZ91D镁合金。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝刚领
韩福生
王伟国
关键词 镁基多孔材料压缩行为吸能特性    
Abstract:Porous Mg and porous AZ91D alloy were prepared using powder metallurgy method basing on space holding fillers. The porosity and pore size can be controlled in the range of 40%-80% and 0.5-2.0mm respectively. The investigation was carried out on the quasi-static compressive behavior and energy absorption properties of the Mg-based porous materials. The result shows that the compressive stress-strain curves were consisted of linear elastic region, plateau and densification region. The plateau region is serrated which indicates a brittle deformation mechanism. The dependence of yield strength on relative density can be understood in terms of Gibson-Ashby model, but the effect of pore size is small that can be neglectable. The energy absorption capacity of the Mg-based porous materials increases with the relative density increasing. Porous AZ91D alloy at the same conditions exhibits a higher energy absorption capacity than the porous Mg, that however represents a higher energy absorption efficiency than the porous AZ91D alloy.
Key wordsMg-based porous material    compressive behavior    energy absorption property
收稿日期: 2011-06-27      出版日期: 2013-02-20
中图分类号: 

TG146.2

 
  TB34

 
基金资助:

陕西省自然科学基金项目(2010JQ6007);陕西省教育厅自然科学专项(12JK0439,11JK0828);延安市工业攻关专项(2011kg12);陕西省高水平大学建设专项(物理学:2012SXTS05);延安大学专项(YDZ2012-07)

作者简介: 郝刚领(1979-),男,副教授,理学博士,主要从事超轻多孔金属材料的制备、性能与应用开发研究,联系地址:陕西省延安市杨家岭延安大学物理与电子信息学院(716000),E-mail:glhao@issp.ac.cn
引用本文:   
郝刚领, 韩福生, 王伟国. 镁基多孔材料准静态压缩行为与吸能特性研究[J]. 材料工程, 2013, (2): 29-34.
HAO Gang-ling, HAN Fu-sheng, WANG Wei-guo. The Quasi-static Compressive Behavior and Energy Absorption Properties of Mg-based Porous Materials. Journal of Materials Engineering, 2013, (2): 29-34.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.02.006      或      http://jme.biam.ac.cn/CN/Y2013/V/I2/29
[1] BANHART J. Manufacture, characterization and application of cellular metals and metal foams [J]. Prog Mater Sci, 2001, 46(6): 559-632.

[2] NAKAJIMA H, KANETAKE N. Porous metals and metal foaming technology. Proceedings of 4th international conference on porous metals and metal foaming technology.Kyoto:Japan Institute of Metals,2006.1-10.

[3] 何德平.超轻多孔金属 [M].北京:科学出版社,2006. 1-7.

[4] YAMADA Y, SHIMOJIMA K, SAKAGUCHI Y, et al. Compressive properties of open-cellular SG91A Al and AZ91 Mg [J]. Materials Science and Engineering A, 1999, 272(2): 455-458.

[5] MUKAI T, KANAHASHI H, YAMADA Y, et al. Dynamic compressive behavior of an ultra-lightweight magnesium foam [J]. Scr Mater, 1999, 41(4): 365-371.

[6] WEN C E, MABUCHI M, YAMADA Y, et al. Processing of biocompatible porous Ti and Mg [J]. Scr Mater, 2001, 45(10-19): 1147-1153.

[7] WEN C E, YAMADA Y, SHIMOJIMA K, et al. Compressibility of porous magnesium foam: dependency on porosity and pore size [J]. Materials Letters, 2004, 58(3-4): 357-360.

[8] HAO Gang-ling, HAN Fu-sheng, LI Wei-dong. Processing and mechanical properties of magnesium foam [J]. Journal of porous materials, 2009, 16(2): 251-256.

[9] GENT A N, RUSCH K C. Permeability of open-cell foamed materials [J]. J Cell Plast, 1966, 2(1): 46-51.

[10] THORNTON P H, MAGEE C L. The deformation of aluminium foams [J]. Metall Trans A, 1975, 6(6): 1253-1263.

[11] MILTZ J, GRUENBAUM G. Evaluation of cushioning properties of plastic foams from compressive measurements [J]. Polymer Eng Sci, 1981, 21(15): 1010-1014.

[12] GIBSON L J, ASHBY M F. Cellular Solids: Structure and Properties[M].2nd ed.Cambridge: Cambridge University Press, 1997. 175-235.
[1] 陈刘定, 童小燕, 姚磊江, 程起有. 开孔对平纹编织C/SiC陶瓷基复合材料力学行为的影响[J]. 材料工程, 2009, 0(9): 71-74.
[2] 杨继年, 李子全. PP/POE/SGF三元复合泡沫体的压缩吸能特性研究[J]. 材料工程, 2009, 0(11): 55-58.
[3] 李爱滨, 耿林, 翟瑾番. 晶须取向对SiCw/6061Al复合材料热压缩变形行为的影响[J]. 材料工程, 2003, 0(4): 14-16,43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn