Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (4): 68-73    DOI: 10.3969/j.issn.1001-4381.2013.04.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
CLAM钢焊接热影响区连续冷却过程相变规律
姜志忠1,2, 黄继华1, 胡杰1, 陈树海1
1. 北京科技大学 材料科学与工程学院,北京 100083;
2. 中国科学院 核能安全技术研究所,合肥 230031
Continuous Cooling Transformation of CLAM Steel in Heat Affected Zone
JIANG Zhi-zhong1,2, HUANG Ji-hua1, HU Jie1, CHEN Shu-hai1
1. School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China;
2. Institute of Nuclear Energy Safety Technology,Chinese Academy of Sciences,Hefei 230031,China
全文: PDF(3241 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用Gleeble1500热模拟机,物理模拟中国低活化马氏体(CLAM)钢焊接热影响区粗晶区(CGHAZ)的冷却过程,结合组织观察、Thermo-calc热力学软件计算和硬度测试等手段分析了冷速ωc对CGHAZ的组织演变及硬度的影响,并绘制了CLAM钢的SH-CCT图。结果表明:CLAM钢的CGHAZ中过冷奥氏体仅发生低温板条马氏体(LM)及先共析铁素体(α铁素体)转变。0.25℃/s为CGHAZ过冷奥氏体发生完全LM相变的临界冷速。当ωc>0.25℃/s时,CGHAZ的组织除LM外,还含有少量的δ铁素体,δ铁素体是δ→γ相变阶段转变不充分而残留至室温的组织,在该冷速范围内粗晶区的组织形态变化不明显。当ωc<0.25℃/s时,由于发生γ→α转变,CGHAZ的组织为α铁素体及LM的混合组织,随着冷速的降低,α铁素体含量增加;当ωc=0.04℃/s时,CGHAZ的组织已完全转变为α铁素体和碳化物的混合组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜志忠
黄继华
胡杰
陈树海
关键词 中国低活化马氏体钢焊接热模拟热影响区连续冷却转变曲线    
Abstract:By means of the physical simulation, the coarse grained zone in heat affected zone (CGHAZ) of CLAM steel during cooling process in the welding thermal cycles was conducted by using of the Gleeble1500 simulator. The effects of cooling rates(ωc)on microstructure transformation and Vickers hardness were investigated through microscopic observations, hardness tests as well as thermodynamic calculation with Thermo-calc software, and the SH-CCT diagram of the CGHAZ for CLAM steel was finally established. The results showed that the SH-CCT diagram exhibited only two transformation regions, i.e. low-temperature lath martensite (LM) region and high-temperature proeutectic ferrite (α-ferrite) region. 0.25℃/s was the critical cooling rate for phase transformation from supercooled austenite to full martensite. When the ωc>0.25℃/s,the microstructure appearances of CGHAZ had no significant changes and consists of lath martensite and a small amount of δ ferrite within this range, the occurrence of δ ferrite was attributed to incomplete δ→γ transformation in the high temperature stage. When the ωc<0.25℃/s, the CGHAZ showed dual phase of α-ferrite and lath martensite because of the γ→α transformation. The content of α-ferrite increased with the decreased cooling rate. When the ωc=0.04℃/s, the microstructure of CGHAZ was completely transformed to α-ferrite and carbides.
Key wordsChina low activation martensitic steel    welding thermal simulation    heat-affected zone    continuous cooling transformation curve
收稿日期: 2011-11-21      出版日期: 2013-04-20
中图分类号: 

TG406

 
基金资助:

国家重点基础研究发展规划资助项目(2008CB717802)

作者简介: 姜志忠(1980-),男,博士,从事新型钢铁材料熔化焊接受焊行为研究,联系地址:安徽省合肥市蜀山湖路350号,中科院合肥物质研究院核能安全技术研究所1135信箱(230031),E-mail:zhizhong.jiang@fds.org.cn
引用本文:   
姜志忠, 黄继华, 胡杰, 陈树海. CLAM钢焊接热影响区连续冷却过程相变规律[J]. 材料工程, 2013, 0(4): 68-73.
JIANG Zhi-zhong, HUANG Ji-hua, HU Jie, CHEN Shu-hai. Continuous Cooling Transformation of CLAM Steel in Heat Affected Zone. Journal of Materials Engineering, 2013, 0(4): 68-73.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.04.013      或      http://jme.biam.ac.cn/CN/Y2013/V0/I4/68
[1] HISHINUMA A, KOHYAMA A, KLUEH R L, et al. Current status and future R&D for reduced-activation ferritic/martensitic steels[J]. Journal of Nuclear Materials,1998,258-263(1):193-204.

[2] POITEVIN Y, BOCCACCINI L V, DELL’ORCO G, et al. The test blanket modules project in Europe: from the strategy to the technical plan over next 10 years[J]. Fusion Engineering and Design,2007,82(15-24):2164-2170.

[3] GASPAROTTO M, ANDREANI R, BOCCACCINI L V, et al. Survey of in-vessel candidate materials for fusion power plants-the european materials R&D programme[J]. Fusion Engineering and Design,2003,66-68(1):129-137.

[4] WAKAI E, OHTSUKA H, MATSUKAWA S, et al. Mechanical properties of small size specimens of F82H steel[J]. Fusion Engineering and Design,2006,81(8-14):1077-1084.

[5] TANIGAWA H, HIROSE T, SHIBA K, et al. Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules[J].Fusion Engineering and Design, 2008,83(10-12):1471-1476.

[6] 李华杰,武会宾,唐荻.中国低活化马氏体钢组织性能及强化机理[J]. 北京科技大学学报,2011,33(2):166-171.LI Hua-jie,WU Hui-bin,TANG Di. Microstructure, properties and strengthening mechanism of China low activation martensitic steel[J]. Journal of University of Science and Technology Beijing,2011,33(2):166-171.

[7] 黄群英,郁金南,万发荣,等.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004,24(1):56-64.HUANG Qun-ying,YU Jin-nan,WAN Fa-rong,et al. The development of low activation martensitic steels for fusion reactor[J]. Chinese Journal of Nuclear Science and Engineering,2004,24(1):56-64.

[8] HUANG Q, LI C, LI Y, et al. Progress in development of China low activation martensitic steel for fusion application[J].Journal of Nuclear Materials,2007,367-370(1):142-146.

[9] 刘松林,柏云清,陈红丽,等.ITER氚增殖实验包层设计研究进展[J].核科学与工程,2009,29(3):266-273.LIU Song-lin,BAI Yun-qing,CHEN Hong-li,et al. Progress in design and study of ITER test blanket modules[J]. Chinese Journal of Nuclear Science and Engineering,2009,29(3):266-273.

[10] WU Y, THE FDS TEAM. Design analysis of the China dual-functional lithium lead (DFLL) test blanket module in ITER[J]. Fusion Engineering and Design,2007,82(15-24):1893-1903.

[11] LUCON E, DECRETON M,VAN W E, et al. Mechanical characterisation of irradiated EUROFER97(0.32dpa, 300℃)[J]. Fusion Engineering and Design,2003,69(1-4):373-377.

[12] STEVEN J ZINKLE. Advanced materials for fusion technology[J].Fusion Engineering and Design,2005,74(1-4):31-40.

[13] 刘宗昌,任慧平,王海燕.奥氏体形成与珠光体转变[M].北京:冶金工业出版社,2010.104-121.

[14] 拉达衣.焊接效应·温度场、残余应力、变形[M].熊第京,郑朝云,史耀武,等译.北京:机械工业出版社,1997.36-38.

[15] 刘宗昌,计云萍,任慧平.贝氏体相变理论研究新进展[J].内蒙古科技大学学报,2012,31(1):34-43. LIU Zong-chang,JI Yun-ping,REN Hui-ping. Latest advance in theoretical study on bainite phase transformation[J]. Journal of Inner Mongolia University of Science and Technology,2012,31(1):34-43.

[16] CABALLERO F G,MILLER M K,BABU S S,et al. Atomicscale observations of bainite transformation in a high carbon high silicon steel[J]. Acta Materialia,2007,55(1):381-390.
[1] 李静, 曹睿, 毛高军, 刘东升, 陈剑虹. 不同热输入下F460钢焊接粗晶热影响区韧脆转变的内在机理[J]. 材料工程, 2016, 44(8): 70-76.
[2] 衣海龙, 徐薇, 龙雷周, 刘振宇. 钛微合金化热轧TRIP钢的连续冷却相变研究[J]. 材料工程, 2015, 43(3): 7-11.
[3] 王卫国, 李彦民, 魏秦文, 姚登樽, 尹长华. X80热煨弯管热处理工艺对组织及性能的影响[J]. 材料工程, 2012, 0(10): 80-83.
[4] 夏佃秀, 尚成嘉, 侯东华, 孙浩, 李兴芳. 石油储罐钢焊接热影响区模拟研究[J]. 材料工程, 2011, 0(4): 20-24.
[5] 严春妍, 李午申, 白世武, 薛振奎. 9Ni钢焊接热影响区组织转变规律的研究[J]. 材料工程, 2010, 0(2): 6-9.
[6] 张海泉, 赵海燕, 张彦华, 李刘合, 张行安. 镍基高温合金电子束焊接热影响区微裂纹特征分析[J]. 材料工程, 2005, 0(3): 22-25,64.
[7] 张海泉, 张彦华, 李刘合, 张行安, 马翔生. 电子束焊接热冲击对GH4133A的微裂纹损伤研究[J]. 材料工程, 2001, 0(2): 36-39.
[8] 王勇, 韩涛, 刘敏. X70管线钢焊接热影响区的局部脆化[J]. 材料工程, 1999, 0(10): 14-16,20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn