Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (5): 67-72    DOI: 10.3969/j.issn.1001-4381.2013.05.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
基于声发射和双谱分析的铝合金损伤原位监测研究
朱荣华, 刚铁, 万楚豪
哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001
In-situ Damage Monitoring of Aluminum Alloy Based on Acoustic Emission and Bispectrum Analysis
ZHU Rong-hua, GANG Tie, WAN Chu-hao
State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(3682 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以列车车体材料7N01铝合金为研究对象,基于声发射和数字图像技术对7N01铝合金三点弯曲损伤过程进行了监测,采用传统的声发射参数与双谱法分析了7N01铝合金裂纹萌生及失稳扩展的声发射特征。结果表明:声发射能量和质心频率可有效预报7N01铝合金微裂纹的萌生。声发射信号的双谱等高线图显示两个频率成分之间的耦合关系,使得识别7N01铝合金三点弯曲过程中的不同阶段变得相对容易。7N01铝合金试样缺口尖端的损伤演变过程的数字图像监测结果,验证了声发射能量和质心频率对裂纹萌生的预测。实验结果显示声发射监测技术为裂纹演变行为的预测提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 铝合金声发射数字图像裂纹萌生双谱    
Abstract:This work was performed on 7N01 aluminum alloy which used in the body of high-speed train and damage was monitored based on acoustic emission (AE) and digital image technology during three-point bending failure of 7N01 aluminum alloy, conventional AE parameters and bispectrum analysis were used to study the characteristic of AE signals during the crack initiation and unstable propagation of 7N01 aluminum alloy. The result shows that AE energy and centroid frequency (CF) were effective indicators to predict the crack initiation of 7N01 aluminum alloy. Bispectrum contour map of AE signals shows the coupling relationship of the two frequency components which makes it easy to identify different stages during three-point bending of 7N01 aluminum alloy. The digital images of damage evolution from monitoring the notch tip region of 7N01 sample verify the prediction of AE signals. The results indicate that AE technique provides the basis for predicting the initiation of micro-crack.
Key wordsaluminum alloy    acoustic emission    digital image    crack initiation    bispectrum
收稿日期: 2012-07-09      出版日期: 2013-05-20
中图分类号: 

TG146.2+1

 
基金资助:

国家自然科学基金资助项目(51175113);国际合作基金资助项目(2007DFR70070)

通讯作者: 刚铁(1952-),男,博士,教授,博士生导师,主要从事无损检测方面的科研和教学工作,联系地址:黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学材料学院(150001),     E-mail: gangt@hit.edu.cn
作者简介: 朱荣华(1981-),男,在读博士,主要从事声发射方面研究工作,联系地址:黑龙江省哈尔滨市南岗区西大直街92号哈尔滨工业大学材料学院(150001),E-mail:ronghua810@yahoo.cn
引用本文:   
朱荣华, 刚铁, 万楚豪. 基于声发射和双谱分析的铝合金损伤原位监测研究[J]. 材料工程, 2013, 0(5): 67-72.
ZHU Rong-hua, GANG Tie, WAN Chu-hao. In-situ Damage Monitoring of Aluminum Alloy Based on Acoustic Emission and Bispectrum Analysis. Journal of Materials Engineering, 2013, 0(5): 67-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.05.014      或      http://jme.biam.ac.cn/CN/Y2013/V0/I5/67
[1] 杨明纬. 声发射检测[M]. 北京: 机械工业出版社, 2005. 1-6.

[2] BELLENGER F, MAZILLE H, IDRISSI H. Use of acoustic emission technique for the early detection of aluminum alloys exfoliation corrosion[J]. NDT & E International, 2002, 35(6): 385-392.

[3] KORDATOS E Z, AGGELIS D G, MATIKAS T E. Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission[J]. Composites: Part B, 2012, 43(6):2676-2686.

[4] MUKHOPADHYAY C K, JAYAKUMAR T, BALDEV R, et al. The influence of notch on the acoustic emission generated during tensile testing of nuclear grade AISI type 304 stainless steel[J]. Materials Science and Engineering:A, 2000, 276(1-2): 83-90.

[5] ROY H, PARIDA N, SIVAPRASAD S, et al. Acoustic emissions during fracture toughness tests of steels exhibiting varying ductility[J]. Materials Science and Engineering: A, 2008, 486(1-2):562-571.

[6] MUKHOPADHYAY C K, JAYAKUMAR T, RAJ B, et al. Acoustic emission-stress intensity factor relations for tensile deformation of notched specimens of AISI type 304 stainless steel[J]. Materials Science and Engineering: A, 2000, 293(1-2):137-145.

[7] CHOI N S, TAKAHASHI K, HOSHINO K. Characteristics of acoustic emission during the damage process in notched short-fibre-reinforced thermoplastics[J]. NDT & E International, 1992, 25(6):271-278.

[8] YANG L, ZHOU Y C, MAO W G, et al. Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings[J]. Applied Physics Letters, 2008, 93(23): 231906-231911.

[9] BOIRCHAK M, FARROW I R, BOND I P, et al. Acoustic emission energy as a fatigue damage parameter for CFRP composites[J]. International Journal of Fatigue, 2007, 29(3): 457-470.

[10] GB/T18182—2000, 金属压力容器声发射检测及结果评价方法[S].

[11] 耿荣生, 沈功田, 刘时风. 基于波形分析的声发射信号处理技术[J]. 无损检测, 2002, 24(6):257-261. GENG Rong-sheng, SHEN Gong-tian, LIU Shi-feng. Acoustic emission signal processing technique based on waveform analysis [J]. Nondestructive Testing, 2002, 24(6):257-261.

[12] 李光海, 刘时风. 基于小波分析的声发射源定位技术[J]. 机械工程学报, 2004, 40(7):136-140. LI Guang-hai, LIU Shi-feng. Technique of acoustic emission source locating based on wavelet analysis[J]. Chinese Journal of Mechanical Engineering, 2004, 40(7): 136-140.

[13] 陈仲生. 基于Matlab 7.0 的统计信息处理[M]. 长沙:湖南科学技术出版社, 2005. 195-207.

[14] PIOTRKOWSKI R, ENRIQUE C, ANTOLINO G. Wavelet power, entropy and bispectrum applied to AE signals for damage identification and evaluation of corroded galvanized steel[J]. Mechanical Systems and Signal Processing, 2009, 23(2): 432-445.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[3] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[4] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[5] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[6] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[7] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[8] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[9] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[10] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[11] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[12] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[13] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[14] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[15] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn