Please wait a minute...
 
材料工程  2013, Vol. 0 Issue (7): 44-49    DOI: 10.3969/j.issn.1001-4381.2013.07.009
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
PA6/POE共混物的分子动力学与介观动力学模拟
张彦飞1,2, 兰艳花3, 付一政1,2, 赵贵哲1,2, 胡国胜2
1. 中北大学 山西省高分子复合材料工程技术研究中心, 太原 030051;
2. 中北大学 材料科学与工程学院, 太原 030051;
3. 北京理工大学 材料科学与工程学院, 北京 100081
Molecular and Mesoscopic Dynamics Properties of PA6/POE Blends
ZHANG Yan-fei1,2, LAN Yan-hua3, FU Yi-zheng1,2, ZHAO Gui-zhe1,2, HU Guo-sheng2
1. Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051, China;
2. College of Material Science and Engineering of North University of China, Taiyuan 030051, China;
3. School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(2490 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了预测聚己内酰胺(PA6)与聚烯烃热塑性弹性体(POE)的相容性及其共混物的玻璃化转变温度(Tg)、力学性能和结合能,采用分子动力学(MD)和介观动力学(MesoDyn)模拟方法对PA6/POE共混物进行了研究。结果表明:通过温度-比容曲线可以得到PA6/POE共混体系的Tg分别对应于PA6与POE的Tg,PA6/POE为不相容体系;MesoDyn模拟了共混物的介观形貌与动力学演变过程,通过比较混合物的有序度参数的大小判断混合物为不相容体系。本模拟方法可以作为预测聚合物共混物性能的有利工具,也可以为高聚物配方设计提供理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 聚己内酰胺聚烯烃热塑性弹性体分子动力学介观动力学相容性    
Abstract:PA6 and POE were simulated by molecular dynamics (MD) and mesoscopic dynamics (MesoDyn) for predicting properties of PA6/POE blends such as the compatibility, the glass transition temperature (Tg), mechanical properties and binding energy of PA6/POE blends. Results show that the Tg has been determined by the slope of the V-T simulation data, and the Tg of PA6/POE are respectively corresponding to Tg of PA6 and POE, which are incompatible system. MesoDyn simulation method was used to simulate the mesoscopic phase separation behavior of PA6/POE. The order parameters computed for the blends can predict that the blends are incompatible systems. Therefore, the method used in this work is a useful tool to provide properties of a given polymer blends. In addition, it is a promising technique to help screen polymer formulations before experimental tests.
Key wordsnylon 6(PA6)    polyolefin elastomer(POE)    molecular dynamics(MD)    mesoscopic dynamics(MesoDyn)    compatibility
收稿日期: 2012-03-15      出版日期: 2013-07-20
中图分类号: 

O631

 
基金资助:

山西省青年科技研究基金(2010021023-5)

作者简介: 张彦飞(1974—),男,副教授,博士,主要从事高分子及其复合材料研究,联系地址:山西省太原市中北大学材料科学与工程学院赵贵哲转(030051),E-mail:zgz@nuc.edu.cn
引用本文:   
张彦飞, 兰艳花, 付一政, 赵贵哲, 胡国胜. PA6/POE共混物的分子动力学与介观动力学模拟[J]. 材料工程, 2013, 0(7): 44-49.
ZHANG Yan-fei, LAN Yan-hua, FU Yi-zheng, ZHAO Gui-zhe, HU Guo-sheng. Molecular and Mesoscopic Dynamics Properties of PA6/POE Blends. Journal of Materials Engineering, 2013, 0(7): 44-49.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.07.009      或      http://jme.biam.ac.cn/CN/Y2013/V0/I7/44
[1] BAI S L, WANG G T, HIVER J M, et al. Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends[J]. Polymer, 2004, 45(9): 3063-3071.

[2] SELL C G, BAI S L, HIVER J M. Polypropylene/polyamide 6/polyethylene-octene elastomer blends[J]. Polymer, 2004, 45(17): 5785-5792.

[3] MA L F, WEI X F, ZHANG Q. Toughening of polyamide 6 with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene-propylene-diene rubber grafted with maleic anhydride blends[J]. Materials & Design, 2012, 33(1): 104-110.

[4] DAS A, MAHALING R N, STÖCKELHUBER K W, et al. Reinforcement and migration of nanoclay in polychloroprene/ethylene-propylene-diene-monomer rubber blends[J]. Composites Science and Technology, 2011, 71(3): 276-281.

[5] 张兴丽,孙兆伟.基于分子动力学对超晶格结构界面热阻的模拟研究[J].航空材料学报,2011,31(4):7-10.ZHANG Xing-li,SUN Zhao-wei.Molecular dynamics simulation on thermal boundary resistance of superlattice structure[J].Journal of Aeronautical Materials,2011,31(4):7-10.

[6] 王建伟,尚新春,吕国才.bcc-Fe空位浓度对辐照损伤影响的分子动力学模拟[J].材料工程,2011,(10):15-18.WANG Jian-wei,SHANG Xin-chun,LU Guo-cai.Molecular dynamics simulation of vacancy concentration on irradiation cascades damage effects in bcc-Fe[J].Journal of Materials Engineering,2011,(10):15-18.

[7] ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J].Journal of Chemical Physics, 1980, 72(4): 2384-1-10.

[8] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics, 1984, 81(8): 3684-1-7.

[9] KARASAWA N, GODDARD W A. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules, 1992, 25(26): 7268-7281.

[10] EWALD P P. Die berechnung optischer und elektrostatischer gitterpotentiale[J].Annalen der Physik,1921,369(3):253-287.

[11] SUN H. Compass:an abinitio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J].Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.

[12] 何曼君, 张红东, 陈维孝,等. 高分子物理[M]. 3版. 上海: 复旦大学出版社, 2007.109-122.

[13] CLANCY T H, PUETZ M, WEINHOLD J D, et al. Mixing of isotactic and syndiotactic polypropylenes in the melt[J]. Macromolecules, 2000, 33(25): 9452-9463.

[14] AKTEN E D, MATTICE W L. Monte Carlo simulation of head-to-head, tail-to-tail polypropylene and its mixing with polyethylene in the melt[J].Macromolecules, 2001, 34(10): 3389-3395.

[15] QIU L, XIAO H M. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs[J].Journal of Hazardous Materials, 2009, 164(1): 329-336.

[16] 肖继军, 黄辉, 肖鹤鸣. HMX晶体和HMX/F2311 PBXs力学性能的MD模拟研究[J]. 化学学报, 2007, 65(17): 1746-1750. XIAO J J, HUANG H, XIAO H M. MD simulation study on the mechanical properties of HMX crystals and HMX/F2311PBXs[J].Acta Chim Sinica, 2007, 65(17): 1746-1750.

[17] TANAKA G, GOETTLER L A. Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling[J]. Polymer, 2002, 43(2): 541-543.
[1] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[2] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[3] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[4] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[5] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[6] 张岩, 肖万伸. 含Ni夹杂的纳米晶Cu基体力学性能分子动力学模拟[J]. 材料工程, 2018, 46(4): 104-110.
[7] 杜军, 宋永明, 张志军, 房轶群, 王伟宏, 王清文. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45(12): 30-36.
[8] 成聪, 陈尚达, 吴勇芝, 黄鸿翔. 不同应变率下纳米多晶Cu/Ni薄膜变形行为的分子动力学模拟[J]. 材料工程, 2015, 43(3): 60-66.
[9] 吴江渝, 何紫莹, 李秀辉. 改性高吸水树脂制备吸水膨胀橡胶及其性能[J]. 材料工程, 2014, 0(6): 40-44.
[10] 倪昕晔, 李爱军, 钟萍, 林涛, 熊信柏, 顾卫东. 不同高温处理工艺对C/C复合材料生物相容性的影响[J]. 材料工程, 2014, 0(6): 62-67.
[11] 范海波, 刘艳林, 杨荣杰, 李向梅. 芳炔树脂/POSS固化相容性及热稳定性研究[J]. 材料工程, 2014, 0(3): 1-6.
[12] 于超, 任会兰, 宁建国. 钨合金力学性能表征分子动力学模拟[J]. 材料工程, 2014, 0(10): 82-89.
[13] 安亭, 赵凤起, 高红旭, 马海霞, 郝海霞, 仪建华, 杨勇. 超级铝热剂的制备及其与双基系推进剂组分的相容性[J]. 材料工程, 2011, 0(11): 23-28,34.
[14] 王建伟, 尚新春, 吕国才. bcc-Fe空位浓度对辐照损伤影响的分子动力学模拟[J]. 材料工程, 2011, 0(10): 15-18.
[15] 于杰, 陈敬超, 周晓龙, 叶未, 邹妤, 刘方方. AgSnO2触头材料电弧侵蚀特征的分子动力学模拟[J]. 材料工程, 2010, 0(3): 8-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn