Please wait a minute...
 
材料工程  2013, Vol. Issue (8): 92-100    DOI: 10.3969/j.issn.1001-4381.2013.08.015
  综述 本期目录 | 过刊浏览 | 高级检索 |
电子束技术在冶金精炼领域中的研究现状和发展趋势
谭毅1,2, 石爽1,2
1. 大连理工大学 材料科学与工程学院, 辽宁 大连 116024;
2. 大连理工大学 辽宁省太阳能光伏系统重点实验室, 辽宁 大连 116024
Progress in Research and Development of Electron Beam Technology in Metallurgy Refining Field
TAN Yi1,2, SHI Shuang1,2
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
2. Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(1681 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 电子束技术具有高能量密度、高真空度的优点,并且能够实现精确控制,成为目前熔炼提纯太阳能级多晶硅、精炼高熔点金属及其合金以及制备高纯特殊钢和超洁净钢的有效手段。本文在阐述电子束熔炼原理的基础上,着重对电子束技术在几种高纯材料与合金精炼中的研究与应用现状进行了综述,指出了目前存在的问题,并对电子束技术下一阶段的研究重点和发展前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭毅
石爽
关键词 电子束技术冶金精炼提纯    
Abstract:Electron beam technology is an effective means for purifying solar-grade silicon, refining refractory metals and its alloy, preparing high purity special steel and super clean steel, because it has the advantages of high energy density and vacuum degree and it can be controlled accurately. In this paper, based on the basic principle of electron beam technology, the current situation of research and application of electron beam technology on the refining of several high-purity materials and alloys were reviewed. The present problems and the main research direction of electron beam technology were also proposed.
Key wordselectron beam technology    metallurgy    refining    purification
收稿日期: 2012-02-17      出版日期: 2013-08-20
中图分类号:  TF134  
基金资助:国家自然科学基金资助项目(51074032)
作者简介: 谭毅(1961-),男,教授,主要从事冶金法提纯多晶硅及多晶硅制造设备的研究,联系地址:大连理工大学新三束实验室207(116024),E-mail:tanyi@dlut.edu.cn
引用本文:   
谭毅, 石爽. 电子束技术在冶金精炼领域中的研究现状和发展趋势[J]. 材料工程, 2013, (8): 92-100.
TAN Yi, SHI Shuang. Progress in Research and Development of Electron Beam Technology in Metallurgy Refining Field. Journal of Materials Engineering, 2013, (8): 92-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2013.08.015      或      http://jme.biam.ac.cn/CN/Y2013/V/I8/92
[1] 张以忱. 电子枪与离子束技术[M]. 北京:冶金工业出版社,2004.32.
[2] BAKISH R. The substance of a technology: electron-beam melting and refining[J]. JOM,1998,50(11):28-30.
[3] SCHILLER S, HEISIG U, PANZER S. Electron Beam Technology[M]. New York:John Wiley & Sons Inc,1983.255.
[4] 张文林, 孙涛, 李娟莹. 电子束熔炼及其设备[J]. 冶金设备,2003,(4):32-34.ZHANG W L, SUN T, LI J Y. The smelting of electron beam and the smelting equipment[J]. Metallurgical Equipment,2003,(4):32-34.
[5] 刘春东, 张东辉, 马轶群, 等. 电子束熔炼技术及发展趋势浅析[J]. 河北建筑工程学院学报,2008,26(4):67-68.LIU C D, ZHANF D H, MA Y Q, et al. Analysis of the electron beam smelting technology and developing trend[J]. Journal of Hebei Institute of Architecture and Civil Engineering,2008,26(4):67-68.
[6] 马立蒲, 刘为超. 电子束熔炼技术及其应用[J]. 有色金属加工,2008,37(6):28-31.MA L P, LIU W C. Electron beam melting technology and its application[J]. Nonferrous Metals Processing,2008,37(6):28-31.
[7] CHOUDHURY A, HENGSBERGER E. Electron beam melting and refining of metals and alloys[J]. ISIJ International,1992,32(5):673-681.
[8] YUGE N, ABE M, HANAZAWA K, et al. Purification of metallurgical-grade silicon up to solar grade[J]. Progress in Photovoltaics,2001,9(3):203-209.
[9] 吕东, 马文会, 伍继君, 等. 冶金法制备太阳能级多晶硅新工艺原理及研究进展[J]. 材料导报,2009,23(3):30-33.LV D, MA W H, WU J J, et al. New process principle and research advances of production of solar grade poly silicon by metallurgical method[J]. Materials Review,2009,23(3):30-33.
[10] 郑淞生, 陈朝, 罗学涛. 多晶硅冶金法除磷的研究进展[J]. 材料导报,2009,23(10):11-19. ZHENG S S, CHEN C, LUO X T. Research progress in phosphorus removal by metallurgical refining[J]. Materials Review,2009,23(10):11-19.
[11] 黄莹莹, 郭辉, 黄建明, 等. 精炼法提纯冶金硅至太阳能级硅的研究进展[J]. 功能材料,2007,38(9):1397-1399. HUANG Y Y, GUO H, HUANG J M, et al. Advances in research on upgrading of solar grade(SoG) silicon by refining metallurgical grade(MG) silicon[J]. Journal of Functional Materials,2007,38(9):1397-1399.
[12] IKEDA T, MAEDA M. Purification of metallurgical silicon for solar-grade silicon by electron beam button melting[J]. ISIJ International,1992,32(5):635-642.
[13] PIRES J C S, BRAGA A F B, MEI P R. Profile of impurities in polycrystalline silicon samples purified in an electron beam melting furnace[J]. Solar Energy Materials & Solar Cells,2003,79(3):347-355.
[14] PIRES J C S, OTUBO J, BRAGA A F B, et al. The purification of metallurgical grade silicon by electron beam melting[J]. Journal of Materials Processing Technology,2005,169(1):16-20.
[15] MIYAKE M, HIRAMATSU T, MAEDA M. Removal of phosphorus and antimony in silicon by electron beam melting at low vacuum[J]. Journal of the Japan Institute of Metals,2006,70(1):43-46.
[16] OSOKIN V A, SHPAK P A, ISHCHENKO V V. Electron-beam technology for refining polycrystalline silicon to be used in solar power applications[J]. Metallurgist,2008,52(1-2):121-127.
[17] LUO D W, LIU N, LU Y P, et al. Removal of impurities from metallurgical grade silicon by electron beam melting[J]. Journal of Semiconductors,2011,32(3):033003.
[18] 徐云飞, 谭毅, 姜大川, 等. 冶金法制备多晶Si杂质去除效果研究[J]. 特种铸造及有色合金,2007,27(9):730-732. XU Y F, TAN Y, JIANG D C, et al. Inclusion removal in multi-crystal silicon fabricated by metallurgical method[J]. Special Casting & Nonferrous Alloys,2007,27(9):730-732.
[19] 董伟, 王强, 彭旭, 等. 电子束熔炼冶金级硅除铝研究[J]. 材料研究学报,2010,24(6):592-596. DONG W, WANG Q, PENG X, et al. Aluminum evaporation from metallurgical silicon in electron beam melting process[J]. Chinese Journal of Materials Research,2010,24(6):592-596.
[20] DONG W, WANG Q, PENG X, et al. Removal of phosphorus in metallurgical grade silicon using electron beam melting[J]. Materials Science Forum,2011,675-577:45-48.
[21] WANG Q, DONG W, TAN Y, et al. Impurities evaporation from metallurgical-grad silicon in electron beam melting process[J]. Rare Metals,2011,30(3):274-277.
[22] 姜大川, 谭毅, 董伟, 等. 电子束束流密度对冶金硅中杂质磷的影响[J]. 材料工程,2010,(3):18-21. JIANG D C, TAN Y, DONG W, et al. Effect of beam density of electron beam on phosphorus impurity in metallurgical grade silicon[J]. Journal of Materials Engineering,2010,(3):18-21.
[23] HANAZAWA K, YUGE N, KATO Y. Evaporation of phosphorus in molten silicon by an electron beam irradiation method[J]. Materials Transactions,2004,45(3):844-849.
[24] 姜大川, 董伟, 谭毅, 等. 电子束熔炼多晶硅对杂质铝去除机制研究[J]. 材料工程,2010,(8):8-11. JIANG D C, DONG W, TAN Y, et al. Investigation on removal of aluminum impurity in metallurgical grade silicon by electron beam melting[J]. Journal of Materials Engineering,2010,(8):8-11.
[25] 彭旭, 董伟, 谭毅, 等. 电子束熔炼冶金级硅中杂质钙的蒸发行为[J]. 功能材料,2010,41(S1):117-120. PENG X, DONG W, TAN Y, et al. Evaporation behavior of calcium in metallurgical silicon by an electron beam melting method[J]. Journal of Functional Materials,2010,41(S1):117-120.
[26] 王强, 董伟, 谭毅, 等. 电子束熔炼去除冶金级硅中磷、铝、钙的研究[J]. 功能材料,2010,41(S1):144-147. WANG Q, DONG W, TAN Y, et al. Investigation on the removal of phosphorus,aluminum,calcium from metallurgical grade silicon using electron beam melting[J]. Journal of Functional Materials,2010,41(S1):144-147.
[27] DONG W, PENG X, JIANG D C, et al. Calcium evaporation from metallurgical grade silicon by an electron beam melting[J]. Materials Science Forum,2011,675-577:41-44.
[28] PENG X, DONG W, TAN Y, et al. Removal of aluminum from metallurgical grade silicon using electron beam melting[J]. Vacuum,2011,86(4):471-475.
[29] 张英明, 周廉, 孙军, 等. 钛合金电子束冷床熔炼研究进展[J]. 钛工业进展,2008,25(4):14-19. ZHANG Y M, ZHOU L, SUN J, et al. Research development of electron beam cold hearth remelting of Ti alloys[J]. Titanium Industry Progress, 2008,25(4):14-19.
[30] LANDIG T, MCKOON R, YOUNG M. Electron-beam melting of Ti-6Al-4V[J]. Journal of Vacuum Science & Technology,1977,14(3):808-814.
[31] 陈峰, 陈丽, 国斌, 等. 电子束冷床熔炼的优与劣[J]. 中国有色金属学报,2010,20(S1):873-876. CHEN F, CHEN L, GUO B, et al. Advantages and disadvantages of electron beam cold hearth melting[J]. The Chinese Journal of Nonferrous Metals,2010,20(S1):873-876.
[32] 罗雷, 于兰兰, 雷文光, 等.电子束冷床熔炼TC4合金元素挥发机制研究[J]. 稀有金属材料与工程,2011,40(4):625-629. LUO L, YU L L, LEI W G, et al. Research on evaporation mechanism of elements in TC4 alloys during electron beam cold hearth melting[J]. Rare Metal Materials and Engineering,2011,40(4):625-629.
[33] 韩明臣, 张英明, 周义刚, 等. TC4合金电子束冷床熔炼过程中LDI和HDI的去除[J]. 稀有金属材料与工程,2008,37(4):665-669. HAN M C, ZHANG Y M, ZHOU Y G, et al. Elimination of LDI and HDI in TC4 alloy during electron beam cold hearth melting[J]. Rare Metal Materials and Engineering,2008,37(4):665-669.
[34] MITCHELL A. The electron beam melting and refining of titanium alloys[J]. Materials Science and Engineering:A,1999,263(2):217-223.
[35] ISAWA T, NAKAMURA H, MURAKAMI K. Aluminum evaporation from titanium alloys in EB hearth melting process[J]. ISIJ International,1992,32(5):607-615.
[36] ZHANG Y M, ZHOU L, SUN J, et al. An investigation on electron beam cold hearth melting of Ti64 alloy[J]. Rare Metal Materials and Engineering,2008,37(11):1973-1977.
[37] WATAKABE S, SUZUKI K, NISHIKAWA K. Control of chemical compositions of Ti-6Al-4V alloy during melting by electron beam furnace[J]. ISIJ International,1992,32(5):625-629.
[38] IVANCHENKO V G, IVASISHIN O M, SEMIATIN S L. Evaluation of evaporation losses during electron-beam melting of Ti-Al-V alloys[J]. Metallurgical and Materials Transactions B,2003,34(6):911-915.
[39] AKHONIN S V, TRIGUB N P, ZAMKOV V N, et al. Mathematical modeling of aluminum evaporation during electron-beam cold-hearth melting of Ti-6Al-4V ingots[J]. Metallurgical and Materials Transactions B,2003,34(4):447-454.
[40] SEMIATIN S L, IVANCHENKO V G, AKHONIN S V, et al. Diffusion models for evaporation losses during electron-beam melting of alpha/beta-titanium alloys[J]. Metallurgical and Materials Transactions B,2003,35(2):235-245.
[41] NAKAMURA H, MITCHELL A. The effect of beam oscillation rate on Al evaporation from a Ti-6Al-4V alloy in the electron beam melting process[J]. ISIJ International,1992,32(5):583-592.
[42] POWELL A, VAN DEN AVYLE J, DAMKROGER B, et al. Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys[J]. Metallurgical and Materials Transactions B,1997,28(6):1227-1239.
[43] BELLOT J P, HESS E, ABLITZER D. Aluminum volatilization and inclusion removal in the electron beam cold hearth melting of Ti alloys[J]. Metallurgical and Materials Transactions B,2000,31(4):845-854.
[44] ZHUK H V, KOBRYN P A, SEMIATIN S L. Influence of heating and solidification conditions on the structure and surface quality of electron-beam melted Ti-6Al-4V ingots[J]. Journal of Materials Processing Technology,2007,190(1-3):387-392.
[45] 胡忠武, 李中奎, 张小明. 钽及钽合金的工业应用和进展[J]. 稀有金属快报,2004,23(7):8-10. HU Z W, LI Z K, ZHANG X M. Industrial application and progress of tantalum and tantalum alloys[J]. Rare Metals Letters,2004,23(7):8-10.
[46] 阎洪. 真空扫描电子束提纯新技术[J]. 真空,2000,(3):45-47. YAN H. New technology of vacuum electron beam to refine metal[J]. Vacuum,2000,(3):45-47.
[47] CHOI G S, LIM J W, MUNIRATHNAM N R, et al. Preparation of 5N grade tantalum by electron beam melting[J]. Journal of Alloys and Compounds,2009,469(1-2):298-303.
[48] VUTOVA K, VASSILEVA V, KOLEVA E, et al. Investigation of electron beam melting and refining of titanium and tantalum scrap[J]. Journal of Materials Processing Technology,2010,210(8):1089-1094.
[49] 石应江. 高纯铌的制备[J]. 稀有金属与硬质合金,1995,(1):41-48. SHI Y J. Preparation of high-purity niobium[J]. Rare Metals And Cemented Carbides,1995,(1):41-48.
[50] 董秀春. 功能材料高纯铌的制备和应用[J]. 新疆有色金属,1996,(2):43-47.
[51] ONO K, HWAN K Y. Electron beam melting and refining of niobium[J]. ISIJ International,1992,32(5):650-655.
[52] FUKUMOTO S, NAKAO R, FUJI M, et al. Composition control of refractory and reactive metals in electron beam melting[J]. ISIJ International,1992,32(5):664-672.
[53] CHOI G S, LIM J W, MUNIRATHNAM N R, et al. Purification of niobium by multiple electron beam melting for superconducting RF cavitie[J]. Metals and Materials International,2009,15(3):385-390.
[54] 朱利安, 杨盛良, 白书欣, 等. 铱及其合金的加工及应用[J]. 贵金属,2009,30(4):58-62. ZHU L A, YANG S L, BAI S X, et al. Processing and application of iridium and Ir-alloys[J]. Precious Metals,2009,30(4):58-62.
[55] OHRINER E K. Purification of iridium by electron beam melting[J]. Journal of Alloys and Compounds,2008,461(1-2):633-640.
[56] 钟培全. 钼与钼合金的应用及其加工方法[J]. 中国钼业,2000,24(5):15-16. ZHONG P Q. Application of molybdenum and molybdenum alloys and their working method[J]. China Molybdenum Industry,2000,24(5):15-16.
[57] 史青, 谷洪刚, 宋月清, 等. 电子束熔炼法钼电极的特性分析[J]. 有色金属,2000,(6): 43-45.
[58] 熊炳昆. 金属铪的应用[J]. 稀有金属快报,2005,24(5):46-47.
[59] 王华森. 铪的电子束熔炼[J]. 稀有金属合金加工,1981,(2):16-19.
[60] 李正邦. 超洁净钢的新进展[J]. 材料与冶金学报,2002,(3):161-165. LI Z B. New progress of super clean steel[J]. Journal of Materials and Metallurgy,2002,(3):161-165.
[61] NAKAO R, FUKUMOTO S, MURATA W, et al. Removal of inclusions in stainless steel by electron beam melting[J]. ISIJ International,1992,32(5):693-699.
[62] NAKAO R, FUKUMOTO S, FUJI M, et al. Evaporation of alloying elements and behavior of degassing reactions of high chromium steel in electron beam melting[J]. ISIJ International,1992,32(5):685-692.
[63] MAIJER D M, IKEDA T, COCKCROFT S L, et al. Mathematical modeling of residual stress formation in electron beam remelting and refining of scrap silicon for the production of solar-grade silicon[J]. Materials Science and Engineering A,2005,390(1-2):188-201.
[64] 王步根, 黄以平. 电子束熔炼多晶硅温度场的数值模拟[J]. 能源技术,2009,30(6):328-330. WANG B G, HUANG Y P. Numerical simulation for temperature field of electron beam melting polysilicon[J]. Energy Technology,2009,30(6):328-330.
[65] 罗雷, 毛小南, 雷文光, 等. 电子束冷床熔炼TC4合金温度场模拟[J]. 中国有色金属学报,2010,(S1):404-409. LUO L, MAO X N, LEI W G, et al. Temperature field simulation of electron beam cold hearth melting TC4 alloy[J]. The Chinese Journal of Nonferrous Metals,2010,(S1):404-409.
[66] 雷文光, 于兰兰, 毛小南. 电子束冷床熔炼TC4钛合金连铸凝固过程数值模拟[J]. 中国有色金属学报,2010,(S1):381-386. LEI W G, YU L L, MAO X N. Numerical simulation of continuous casting solidification process of TC4 titanium alloy during EBCHM[J]. The Chinese Journal of Nonferrous Metals,2010,(S1):381-386.
[67] RITCHIE M, LEE P D, MITCHELL A, et al. X-ray-based measurement of composition during electron beam melting of AISI 316 stainless steel: part II. evaporative processes and simulation[J]. Metallurgical and Materials Transactions A,2003,34(3):863-877.
[68] JIANG D C, TAN Y, SHI S, et al. Research on a new method of electron beam candle melting used for the removal of P from molten Si[J]. Materials Research Innovations,2011,15(6):406-409.
[1] 李明, 康永旺, 郭丰伟. 铌硅基超高温结构材料成形技术研究进展[J]. 材料工程, 2020, 48(11): 58-67.
[2] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[3] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[4] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[5] 马琳, 李伟, 白娇娇, 赵丰停. 粉末冶金Ti-14Mo-2.1Ta-0.9Nb-7Zr合金热变形行为[J]. 材料工程, 2018, 46(10): 47-54.
[6] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[7] 谭毅, 游小刚, 李佳艳, 石爽. 电子束技术在高温合金中的应用[J]. 材料工程, 2015, 43(12): 101-112.
[8] 禹胜林, 薛松柏, 尹邦跃, 黄薇. Al-Si电子封装材料粉末冶金法致密性研究[J]. 材料工程, 2014, 0(2): 45-50.
[9] 王昕, 尹树春, 贺磊, 王社斌. 0.05C-0.3Si-2.0Mn-xCe系钢液的洁净度与夹杂物变性行为[J]. 材料工程, 2013, 0(3): 42-50.
[10] 谭毅, 郭校亮, 石爽, 董伟, 姜大川, 李佳艳. 冶金法制备太阳能级多晶硅研究现状及发展趋势[J]. 材料工程, 2013, 0(3): 90-96.
[11] 李佳艳, 李超超, 李亚琼, 谭毅. 多晶硅精炼提纯过程中铝硅合金的低温电解分离[J]. 材料工程, 2013, 0(11): 1-5,11.
[12] 张家敏, 易健宏, 甘国友, 严继康, 杜景红, 刘意春. 烧结TiH2粉末制备钛合金的工艺及组织[J]. 材料工程, 2013, 0(10): 64-70.
[13] 田世藩, 马济民. 电子束冷炉床熔炼(EBCHM)技术的发展与应用[J]. 材料工程, 2012, 0(2): 77-85.
[14] 王淑峰, 李惠琪, 迟静, 李敏, 柴禄, 许慧. 等离子原位冶金复合碳化钨合金组织特性与结晶机理研究[J]. 材料工程, 2011, 0(8): 72-76.
[15] 黄锋, 陈瑞润, 郭景杰, 丁宏升, 杨劼人, 苏彦庆, 傅恒志. 冷坩埚原理及其在多晶硅制备中的应用[J]. 材料工程, 2011, 0(7): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn