Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (3): 7-13,20    DOI: 10.3969/j.issn.1001-4381.2014.03.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
镍基合金超声疲劳裂纹扩展寿命预测研究
薛红前, 姜祎君, 封硕
西北工业大学 现代设计与集成制造技术教育部重点实验室, 西安 710072
Life Prediction of Ultrasonic Fatigue Crack Propagation of Nickel-based Alloy
XUE Hong-qian, JIANG Yi-jun, FENG Shuo
Key Laboratory of Contemporary Design and Integrated Manufacturing Technology (Ministry of Education), Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(2217 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对发动机结构材料承受高频循环载荷的特点,应用超声疲劳试验技术开展了镍基合金材料的疲劳裂纹扩展试验研究。考虑高频载荷下疲劳裂纹扩展过程中的温升效应,测试了超声疲劳裂纹扩展过程中的温度变化,基于温度变化对材料弹性模量的影响和热膨胀效应,数值计算了疲劳裂纹扩展应力强度因子。研究了温度变化对超声疲劳裂纹扩展的影响机制,并在现有模型基础上,建立了考虑温度影响的超声疲劳裂纹扩展模型,完善疲劳裂纹扩展寿命预测方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛红前
姜祎君
封硕
关键词 超声疲劳镍基合金温度影响裂纹扩展模型    
Abstract:According to the characteristics of engine structure materials under high frequency cyclic loading, the crack propagation of nickel-based alloy was studied using ultrasonic fatigue experimental system. Considering the temperature rising effect on the fatigue crack propagation under high frequency loading, the temperature changes were recorded in the fatigue test. The main effect of temperature rising was focused on changing of dynamic modulus of elasticity and coefficient of thermal expansion of nickel-based alloy. Based on these, the correctional stress intensity factor was calculated in keeping with the real experimental conditions. Then, the research on how the temperature rising influences the ultrasonic fatigue crack propagation was carried on, meanwhile, based on the current existing models, a model which considering temperature rising of ultrasonic fatigue crack propagation was given to improve the life prediction theory of fatigue crack propagation.
Key wordsultrasonic fatigue    nickel-based alloy    temperature influence    model of crack propagation
收稿日期: 2012-09-24     
1:  V252.2  
  O346.2  
基金资助:国家自然科学基金(50775182);西北工业大学研究生创业种子基金(Z2012040)
作者简介: 薛红前(1967- ),男,教授,博士,从事结构材料疲劳、断裂,装配与连接技术方面的研究,联系地址:陕西省西安市碑林区西北工业大学友谊校区航空楼B619室(710072),E-mail:xuedang@nwpu.edu.cn
引用本文:   
薛红前, 姜祎君, 封硕. 镍基合金超声疲劳裂纹扩展寿命预测研究[J]. 材料工程, 2014, 0(3): 7-13,20.
XUE Hong-qian, JIANG Yi-jun, FENG Shuo. Life Prediction of Ultrasonic Fatigue Crack Propagation of Nickel-based Alloy. Journal of Materials Engineering, 2014, 0(3): 7-13,20.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.3969/j.issn.1001-4381.2014.03.002      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I3/7
[1] XUE Hong-qian,WU Tie-ying,BATHIAS C. Gigacycle fatigue behavior of cast aluminum in tension and torsion loading [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011,28(1):32-37.
[2] 胡燕慧,钟群鹏,张峥,等. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响 [J]. 材料工程,2011,(2):26-30.HU Yan-hui,ZHONG Qun-peng, ZHANG Zheng, et al. Effect of ultrasonic fatigue testing method on fatigue properties and crack initiation mechanism of S06 steel [J]. Journal of Materials Engineering, 2011,(2):26-30.
[3] BATHIAS C, IDRISSI K, WU T Y. Influence of mean stress on Ti6A14V fatigue crack growth at very high frequency [J]. Engineering Fracture Mechanics, 1997, 56(2): 255-264.
[4] SCHONBAUER B M, STANZL-TSCHEGG S E. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel [J]. Ultrasonics, 2013,53(8):1399-1405.
[5] ROZALI S, MUTOH Y, NAGATA K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5 mass% NaCl environment [J]. Materials Science and Engineering: A, 2011,528(6): 2509-2516.
[6] 薛红前,陶华,BATHIAS C.超声疲劳试样设计[J].航空学报,2004,25(4):425-428.XUE Hong-qian, TAO Hua, BATHIAS C. Ultrasonic fatigue specimen design [J]. Chinese Journal of Aeronautics, 2004, 25(4):425-428.
[7] FORMAN R G, KEARNEY V E, ENGLE R M. Numerical analysis of crack propagation in cyclic-loaded structure [J].Basic Eng,1967,89(3):459-46.
[8] ELBER W. The Significance of Fatigue Crack Closure, Damage Tolerance in Aircraft Structures [S]. American:ASTM STP 486,1971:230-242.
[9] 杨冰,赵永翔,梁红琴,等.基于Elber型方程的随机疲劳长裂纹扩展概率模型[J].工程力学,2005,22(5): 99-104.YANG Bing, ZHAO Yong-xiang, LIANG Hong-qin, et al. Elber-type-equation-based probabilistic model for random fatigue long crack propagation [J]. Engineering Mechanics,2005, 22(5):99-104.
[10] JEGLIC F, NIESSEN P, BURNS D J. Temperature Dependence of Fatigue Crack Propagation in an Al-2.6 Mg Alloy [S]. Fatigue at Elevated Temperature, American:ASTM STP, 1973,520:139-148.
[11] 毛雪平,王岗.镍基合金C276高温拉伸力学性能的试验分析[J].动力工程,2009,29(7):699-702. MAO Xue-ping, WANG Gang. High temperature tensile properties of nickel-based alloy C276 [J]. Journal of Power Engineering, 2009, 29(7): 699-702.
[12] 李振荣,田素贵,赵忠刚,等. 一种热连轧GH4169合金的蠕变行为与断裂机制 [J]. 航空材料学报, 2011,31(5):71-76. LI Zhen-rong,TIAN Su-gui, ZHAO Zhong-gang, et al. Creep behavior and fracture mechanism of HCR GH4169 superalloy [J]. Journal of Aeronautical Materials,2011,31(5):71-76.
[1] 曾莉, 王岩, 李莎, 李阳, 金宪哲. 700℃超超临界锅炉材料GH4700镍基合金组织演变研究[J]. 材料工程, 2013, 0(9): 44-47.
[2] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012, 0(8): 92-100.
[3] 宋宜四, 高万夫, 王超, 雷晓维, 王华良. 热处理工艺对Inconel718合金组织、力学性能及耐蚀性能的影响[J]. 材料工程, 2012, 0(6): 37-42.
[4] 薛河, 赵丹, 彭群家, 唐伟, 方秀荣, 龚晓燕. 镍基合金材料塑性对应力腐蚀裂纹尖端应力应变场影响的研究[J]. 材料工程, 2011, 0(5): 17-20,25.
[5] 胡燕慧, 钟群鹏, 张峥, 韩邦成. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J]. 材料工程, 2011, 0(2): 26-30.
[6] 薛红前, 杨斌堂, C. Bathias. 高频载荷下高强钢的超高周疲劳及热耗散研究[J]. 材料工程, 2009, 0(3): 49-53.
[7] 王明罡, 田素贵, 于兴福, 李唐, 夏丹, 雷军. 单晶镍基合金的热处理及对蠕变性能的影响[J]. 材料工程, 2009, 0(3): 56-61.
[8] 邵红红, 蒋小燕, 张道军. 40CrNiMoA钢不同微观组织超声疲劳寿命研究[J]. 材料工程, 2008, 0(5): 24-28.
[9] 刘平, 杨军红. 镍基合金钴元素可见光谱数字化分析技术研究[J]. 材料工程, 2008, 0(11): 46-48.
[10] 余乾, 宋尽霞, 王定刚, 曲士昱, 李青. 返回料比例对镍基高温合金K465组织和性能的影响[J]. 材料工程, 2006, 0(6): 9-12,39.
[11] 刘如铁, 李溪滨, 熊拥军, 赵福安. 二硫化钼添加方式对Ni-Cr基高温自润滑材料性能的影响[J]. 材料工程, 2005, 0(7): 7-10.
[12] 彭志方, 王延庆, 任遥遥, 刘艳, 施雨湘. Ni-Cr-Co合金相含量分布及其对高温拉伸性能的影响[J]. 材料工程, 2002, 0(3): 10-13.
[13] 李志, 曲敬信, 吴仲行, 周平安, 邵荷生. 真空熔结镍基合金涂层的组织结构及其高温磨损特性[J]. 材料工程, 2000, 0(1): 7-12.
[14] 张绍维, R. N. 斯特温斯, C. K. L. 戴维斯. 镍基高温合金中γ'相长大和分布规律的研究[J]. 材料工程, 1992, 0(3): 17-19,33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn