Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (4): 79-84    DOI: 10.3969/j.issn.1001-4381.2014.04.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
纤维取向对炭纤维织物复合材料扭动微动摩擦学性能的影响
左孔成, 蔡振兵, 宋川, 彭金方, 莫继良, 沈火明, 朱旻昊
西南交通大学 牵引动力国家重点实验室摩擦学研究所, 成都 610031
Effect of Fibers Orientation on Torsional Fretting Wear Behaviors of Carbon Fiber Fabric Composites
ZUO Kong-cheng, CAI Zhen-bing, SONG Chuan, PENG Jin-fang, MO Ji-liang, SHEN Huo-ming, ZHU Min-hao
Tribology Research Institute, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(4813 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以球/平面接触方式,进行炭纤维织物复合材料与GCr15钢球之间的扭动微动磨损实验研究,讨论纤维取向对微动磨损性能的影响。结果表明:该材料与金属材料类似,均存在3个微动运行区域,即部分滑移区、混合区以及滑移区,微动磨损机制为磨粒磨损和氧化磨损。炭纤维复合材料微动摩擦磨损性能表现出明显各向异性特征,即纤维平行且垂直于接触表面的纤维混合排布(N取向)复合材料的摩擦耗散能和磨损量均小于纤维平行于接触表面的P取向。在混合区域,磨损区半径随循环周次的增加而逐渐增大,且N取向小于P取向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
左孔成
蔡振兵
宋川
彭金方
莫继良
沈火明
朱旻昊
关键词 炭纤维织物复合材料微动磨损扭动微动纤维取向各向异性    
Abstract:Under the contact configuration of ball-on-flat, the torsional fretting wear experimental research between carbon fiber fabric composites and GCr15 steel ball was carried out. The influence of fiber orientation on fretting wear properties was discussed. The results show that, similar to the metal materials, the carbon fiber fabric composites is still existed in three fretting running regimens, i.e. partial slip regime (PSR), mixed regime(MR) and slip regime(SR). The torsional fretting wear mechanisms of carbon fiber fabric composites are abrasive and oxidative wear. The friction and wear properties of fretting of carbon fiber fabric composites presented obvious anisotropy. The friction dissipated energy and wear volume of the N orientation where the fibers are vertical and parallel to the contact surface are all less than that of the P orientation where the fibers are parallel to the contact surface. In MR, the damage circle radius is increased with increasing number of cycles and the damage circle radius of N orientation is smaller than that of P orientation.
Key wordscarbon fiber fabric composite    fretting wear    torsional fretting    fiber orientation    anisotropy
收稿日期: 2013-06-28      出版日期: 2014-04-20
中图分类号:  TB332  
通讯作者: 朱旻昊(1968- ),男,教授,从事专业:摩擦学表面工程材料学,联系地址:四川省成都市二环路北一段111号西南交通大学摩擦学研究所311房间(610031),E-mail:zhuminhao@139.com     E-mail: zhuminhao@139.com
作者简介: 左孔成(1982- ),男,博士,从事机械设计及理论方面研究工作,联系地址:四川省成都市二环路北一段111号西南交通大学摩擦学研究所310-2房间(610031),E-mail:zuokongcheng@163.com
引用本文:   
左孔成, 蔡振兵, 宋川, 彭金方, 莫继良, 沈火明, 朱旻昊. 纤维取向对炭纤维织物复合材料扭动微动摩擦学性能的影响[J]. 材料工程, 2014, 0(4): 79-84.
ZUO Kong-cheng, CAI Zhen-bing, SONG Chuan, PENG Jin-fang, MO Ji-liang, SHEN Huo-ming, ZHU Min-hao. Effect of Fibers Orientation on Torsional Fretting Wear Behaviors of Carbon Fiber Fabric Composites. Journal of Materials Engineering, 2014, 0(4): 79-84.
链接本文:  
http://jme.biam.ac.cn/CN/10.3969/j.issn.1001-4381.2014.04.014      或      http://jme.biam.ac.cn/CN/Y2014/V0/I4/79
[1] WATERHOUSE R B. Fretting Corrosion[M]. England:Pergamon press,1972.
[2] HILLS D A. Mechanics of fretting fatigue[J]. Wear,1994,175(1):107-13.
[3] BERTHIER Y, VINCENT L, GODET M. Fretting fatigue and fretting wear[J]. Tribology International,1989,22(4):235-242.
[4] MANJUNATHA C M, BOJJA R, JAGANNATHAN N, et al. Enhanced fatigue behavior of a glass fiber reinforced hybrid particles modified epoxy nanocomposite under WISPERX spectrum load sequence[J]. International Journal of Fatigue,2013,54:25-31.
[5] ISA M T, AHMED A S, ADEREMI B O, et al. Effect of fiber type and combinations on the mechanical, physical and thermal stability properties of polyester hybrid composites[J]. Composites Part B:Engineering,2013,52:217-23.
[6] TSUCHIKURA N, FAUDREE M C, NISHI Y. Charpy impact value of sandwich structural (CFRP/ABS/CFRP) composites constructed with carbon fiber reinforced epoxy polymer (CFRP) and acrylonitrile butadiene styrene (ABS) sheets separately irradiated by electron beam prior to lamination[J]. Materials Transactions,2013,54(3):371-379.
[7] TIAN Nong, XUE Zhong-min, ZHANG Zuo-guang.Research progress of fiber reinforced polymer-based frictional materials[J].Lubrication Engineering,2009,34(2):98-101.
[8] GUO Qing-bing, XING Dong-ming, CHEN Jiang-hua, et al. Recent progress of sliding wear properties of polymer based micro composites[J].Journal of Zhongkai University of Agriculture and Engineering,2011,24(1):61-66.
[9] ZHAO Quan, HUANG Hao-jie. The study of design and optimization for composite wing structure of commercial aircraft[J].Science and Technology Innovation Herald,2013,(11):68-74.
[10] ARTERO-GUERRERO J A,PERNAS-SNCHEZ J, LPEZ-PUENTE J, et al. On the influence of filling level in CFRP aircraft fuel tank subjected to high velocity impacts[J]. Composite Structures,2014,107:570-577.
[11] WU K T, SUN Z, JEN C K, et al. A multi-point ultrasonic detection approach to fretting crack detection in an aircraft component[A].Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security[C].San Diego,California:SPIE,2012.834710-834715.
[12] LEE K J, CHENG H Z, JOU W S, et al. The influence of carbon fiber orientation on the mechanical and tribological behavior of carbon fiber/LCP composites[J]. Mater Chem Phys,2007,102(2-3):187-94.
[13] CIRINO M, FRIEDRICH K, PIPES R. The effect of fiber orientation on the abrasive wear behavior of polymer composite materials[J]. Wear,1988,121(2):127-141.
[14] SUNG N H, SUH N P. Friction and wear of fiber reinforced polymeric composites-effect of fiber orientation on wear[A]. 35th Annual Technical Conference[C]. Montreal,Canada:Society of Plastics Engineers,1977.311-314.
[15] NAK-HO S, SUH N P. Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites[J]. Wear,1979,53(1):129-41.
[1] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[2] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[3] 赵泽军, 卢学鹏, 刘帅, 息剑峰, 李宝河. MgO/Pd底层对CoSiB/Pd多层膜垂直磁各向异性及热稳定性的影响[J]. 材料工程, 2020, 48(2): 65-70.
[4] 韩永明, 韩俊玲, 辛龙, 刘廷光, 陆永浩, 庄子哲雄. 晶界工程处理对Inconel 690TT合金微动磨损行为的影响[J]. 材料工程, 2020, 48(10): 123-132.
[5] 丰涵, 王宝顺, 吴晓涵, 王曼, 佴启亮, 宋志刚. 022Cr25Ni7Mo4N双相不锈钢等温处理中的组织演变[J]. 材料工程, 2020, 48(1): 70-76.
[6] 罗忠兵, 张嘉宁, 金士杰, 林莉. 定向凝固镍基合金DZ444声学特性的各向异性[J]. 材料工程, 2019, 47(4): 120-126.
[7] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[8] 张斌, 陈岁元, 梁京, 刘常升, 崔彤, 王玫. 短应力线轧机激光再制造现状及发展趋势[J]. 材料工程, 2019, 47(11): 43-52.
[9] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[10] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[11] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[12] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[13] 丁智平, 黄达勇, 荣继刚, 黄友剑, 曾家兴. 长玻纤增强复合材料注塑成型构件强度分析[J]. 材料工程, 2018, 46(4): 111-119.
[14] 闫晓玲, 曹勇, 董世运. 激光熔覆再制造涂层应力超声无损评价[J]. 材料工程, 2018, 46(10): 96-103.
[15] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn