Please wait a minute...
 
材料工程  2003, Vol. 0 Issue (8): 17-19    
  研究与应用 本期目录 | 过刊浏览 | 高级检索 |
空化场中纳米镍磷合金粉体材料的制备
王瑛, 余水, 俞宏英, 孙冬柏
北京科技大学表面科学与腐蚀工程系, 北京, 100083
Nano-scale Ni-P Alloy Powder Produced by Cavitative Field
WANG Ying, YU Shui, YU Hong-ying, SUN Dong-bai
Department of Surface Science and Corrosion Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(197 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 尝试利用自制的空化场电化学装置,在水溶液中制备纳米镍磷合金粉体材料,实验装置中包括以电火花技术为基础的空泡发生系统,反应容器,循环冷却系统,真空抽滤系统等.实验结果表明:在空化场的作用下,成功地在NiSO4和NaH2PO2反应溶液中制备出纳米尺度的镍磷合金粉体材料,该材料具有非晶态结构.材料的颗粒尺寸随空化场能量的提高而减小.典型的纳米镍合金的颗粒尺寸为80nm.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王瑛
余水
俞宏英
孙冬柏
关键词 Ni-P非晶纳米粉体空化场    
Abstract:Nano-scale Ni-P alloy powder in the solution was produced by means of a homemade electrochemistry system with acvitative field. The electrochemistry system consists of a cavitative generating apparatus based on electric spark technique, reaction container, circulating cooling device and a filter by vacuum. The experimental results indicate that the nano-scale Ni-P alloy powder with the microstructure of amorphous have been obtained in NiSO4 and NaH2PO2 solution upon cavitative field. The powder size of the Ni alloy decreases with increasing energy of cavitative field. The typical powder size of the sample is about 80nm.
Key wordsNi-P amorphous    nano-powder    cavitative field
     出版日期: 2003-08-20
1:  TF123  
基金资助:北京市科技项目(9550311800)
作者简介: 王瑛(1954- ),女,高级工程师,博士研究生,主要从事纳米材料制备与表征、材料表面与界面研究,联系地址:北京科技大学材料学院表面科学与腐蚀工程系(100083).
引用本文:   
王瑛, 余水, 俞宏英, 孙冬柏. 空化场中纳米镍磷合金粉体材料的制备[J]. 材料工程, 2003, 0(8): 17-19.
WANG Ying, YU Shui, YU Hong-ying, SUN Dong-bai. Nano-scale Ni-P Alloy Powder Produced by Cavitative Field. Journal of Materials Engineering, 2003, 0(8): 17-19.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2003/V0/I8/17
[1] Davis S C, Severson S J, Klabunde K J. Clustering of metal atoms in organic media. VIII. Low-temperature cleavage of alkanes by small nickel particles resulting in stable nickel-organic composites with the unusual magnetic and chemical properties [J]. Journal of the American Chemical Society,1981, 103(1):3024-3029.
[2] Matsunawa A, Katayama S. Laser production of ultra fine powders[A]. Annales de Chimie-Science des Materiaux[C]. 1993, 18(5-6):379-386.
[3] 王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.15-17.
[4] Nagashima K, Wada M, Kato A. Preparation of fine Ni particles by the spray-pyrolysis technique and their film forming properties in the thick film method [J]. Journal of Materials Research, 1990,5(12):2828-2834.
[5] 余水.纳米镍基合金粉体材料的制备及性能研究[D].北京科技大学硕士学位论文,2003.
[6] Popczyk M, Serek A and Budniok A.Production and properties of composite layers based on an Ni-P amorphous matrix [J]. Nanotechnology, 2003, 14(2):341-346.
[7] 姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000.8-10.
[8] Szpunar B, Aus M, Cheung C, et al.Magnetism in nanostructured Ni-P and Co-W alloys [J]. J Magn Magn Mater, 1998,187(3):325-336.
[1] 胡志强, 黄德锋, 刘显卿, 高丽, 高宏. 纳米NiAl2O4粉体的制备与表征[J]. 材料工程, 2012, 0(8): 51-54,59.
[2] 任继文, 彭蓓, 张鸿海, 刘胜. 钇稳定氧化锆纳米粉体烧结工艺的研究[J]. 材料工程, 2009, 0(2): 38-42.
[3] 王兴尧, 韩珺圆, 王静, 杨桂琴. 尖晶石MgFe2O4纳米粉的水热反萃合成[J]. 材料工程, 2008, 0(10): 98-100,105.
[4] 刘红梅, 张德庆, 林海波, 张亮, 刘海涛, 邱成军, 曹茂盛. 溶胶-凝胶法制备纳米PZT粉体及结构表征[J]. 材料工程, 2006, 0(3): 52-54,59.
[5] 梁秀兵, 邓智昌, 许一, 徐滨士. 热喷涂纳米粉体材料及其涂层制备[J]. 材料工程, 2002, 0(11): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn