Please wait a minute...
 
材料工程  2010, Vol. 0 Issue (9): 62-65,70    
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
几种典型材料的动态硬度研究
王扬卫, 马壮, 于晓东, 王富耻, 胡欣
北京理工大学, 材料学院, 北京, 100081
Dynamic Indentation Hardness of Typical Materials
WANG Yang-wei, MA Zhuang, YU Xiao-dong, WANG Fu-chi, HU Xin
School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(1098 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过在金刚石维氏压头上施加单次压缩脉冲,压头动态压入材料获得动态压痕,建立动态硬度测试系统;测试了2A12铝合金、45钢、AZ31镁合金、AD95氧化铝陶瓷等典型材料的动、静态硬度.结果表明:所测试材料的动态硬度均高于静态硬度,在高应变率加载条件下,材料具有更高的压入变形抗力.金属材料动态硬度较静态硬度提高的幅度与材料的晶体结构类型有关,反映了被测材料的应变率硬化能力;而陶瓷压痕区材料受到周向材料惯性约束作用,裂纹形核和生长被抑制,动态硬度较静态硬度大幅提高.动态硬度可以有效表征材料的动态力学性能.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王扬卫
马壮
于晓东
王富耻
胡欣
关键词 动态硬度高应变率惯性约束表征金属氧化铝陶瓷    
Abstract:A dynamic indentation hardness measuring system was established successfully by loading a single compressive pulse on the diamond Vickers indenter and examining the dynamic indentation size and dynamic load value.The dynamic hardness of several typical materials such as 2A12 aluminum alloy,45steel,AZ31 magnesium alloy and AD95 alumina was tested with such dynamic hardness testing system.The results show that the dynamic hardness is higher than static hardness of all the materials used in the current investigation,i.e.,the materials have a higher deformation resistance during dynamic indentation.For metallic materials,the increment of hardness under dynamic conditions is strongly dependent on the crystal structure,and can reflect the ability of strain rate strengthening of materials.For the ceramic,AD95 alumina,the greater increase of dynamic hardness can be attributed to the inertial confinement around the indentation,which consequently inhibits the nucleation and growth of cracks.The dynamic hardness can efficiently characterize the dynamic mechanical properties of materials.
Key wordsdynamic hardness    high strain rate    inertial confinement    characterization    metal    alumina
收稿日期: 2009-08-26      出版日期: 2010-09-20
中图分类号:  TB301  
作者简介: 王扬卫(1977-),男,博士,讲师,从事材料动态力学性能测试表征、复合材料制备工作,联系地址:北京市海淀区中关村南大街5号北京理工大学材料学院(100081),E-mail:wangyangwei@bit.edu.cn
引用本文:   
王扬卫, 马壮, 于晓东, 王富耻, 胡欣. 几种典型材料的动态硬度研究[J]. 材料工程, 2010, 0(9): 62-65,70.
WANG Yang-wei, MA Zhuang, YU Xiao-dong, WANG Fu-chi, HU Xin. Dynamic Indentation Hardness of Typical Materials. Journal of Materials Engineering, 2010, 0(9): 62-65,70.
链接本文:  
http://jme.biam.ac.cn/CN/      或      http://jme.biam.ac.cn/CN/Y2010/V0/I9/62
[1]DAVID TABOR.The Hardness of Metals[M].London:Oxford University Press,1951.40-44.
[2]GIANNAKOPOULOS A E,SURESH S.Determination of elastoplastic properties by instrumented sharp indentation[J].Scripta Materialia,1999,40(4):1191-1198.
[3]林巨才.现代硬度测量技术及应用[M].北京:中国计量出版社,2008.58-59.
[4]LI Y L,RAMESH K T,CHIN E S C.The mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations[J].Materials Science and Engineering A,2004,382:162-170.
[5]MEYERS M A.Dynamic Behavior of Materials[M].New York:John Wiley &Sons Inc,1994.
[6]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992.
[7]RAISER G,CLIFTON R J.High strain rate deformation and damage in ceramic materials[J].Journal of Engineering Materials and Technology,1993,115(3):292-299.
[8]LUO H.Experimental and analytical investigation of dynamic compressive behavior of intact and damaged ceramics[D].Tucson:The University of Arizona,2005.
[9]胡欣.动态硬度表征装甲材料动态性能研究[D].北京:北京理工大学,2009.
[10]KOEPPEL B J,SUBHASH G.A novel technique to determine dynamic indentation hardness of metals[J].Experimental Techniques,1997,21(3):16-18.
[11]SUBHASH G,KOEPPEL B J,CHANDRA A.Dynamic indentation hardness and rate sensitivity in metals[J].Journal of Engineering Materials and Technology,1999,121:257-263.
[12]LU J,SURESH S,RAVICHANDRAN R.Dynamic indentation for determining the strain rate sensitivity of metals[J].Journal of the Mechanics and Physics of Solids,2003,51:1923-1938.
[13]SUBHASH G,ZHANG H.Dynamic indentation response of ZrHf-based bulk metallic glasses[J].Journal of Materials Research,2007,22(2):478-485.
[14]NEMAT-NASSER S,ISAACS J B,STARRETT J E.Hopkinson techniques for dynamic recovery experiments[J].Mathematical and Physical Sciences,1991,435:371-391.
[15]HAN C,SUN C T.A study of pre-stress effect on static and dynamic contact failure of brittle materials[J].International Journal of Impact Engineering,2000,24(6-7):597-611.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 董伟, 孟瑶, 许富民, 韩阳, 王延洋, 陈楷. 基于单分散逐液滴雾化法制备锡合金微细球形金属粉末[J]. 材料工程, 2020, 48(9): 124-131.
[3] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[4] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[5] 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
[6] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[7] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[8] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[9] 陈挺, 凌展翔, 王敏, 孔谅. 镀锌钢的液态金属脆现象及其在电阻点焊过程中的表现[J]. 材料工程, 2020, 48(4): 89-99.
[10] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[11] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[12] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[13] 刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展[J]. 材料工程, 2020, 48(10): 17-27.
[14] 庄金亮, 刘湘粤, 杜嬛. TEMPO功能化锆基MOFs的合成及醇催化氧化性能[J]. 材料工程, 2020, 48(10): 169-175.
[15] 刘凯, 崔荣洪, 侯波, 何宇廷, 牛欢. PVD薄膜传感器裂纹检测概率测定与分析[J]. 材料工程, 2019, 47(9): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn