Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (4): 1-8    DOI: 10.11868/j.issn.1001-4381.2016.04.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究
宋广胜1, 陈强强1, 徐勇2, 李娟2, 张士宏2
1. 沈阳航空航天大学 材料科学与工程学院, 沈阳 110036;
2. 中国科学院 金属研究所, 沈阳 110016
Deformation Micro-mechanism of AZ31 Mg Alloy During Tension at Room Temperature by EBSD In-situ Tracking
SONG Guang-sheng1, CHEN Qiang-qiang1, XU Yong2, LI Juan2, ZHANG Shi-hong2
1. College of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036, China;
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2711 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用电子背散射衍射(EBSD)技术,原位跟踪AZ31镁合金轧制板材室温下沿轧向拉伸时的晶粒取向变化。对变形过程的滑移系和孪晶启动机进行分析。结果表明:变形过程主要由〈a〉基面和柱面滑移系开动而实现,晶粒取向无明显变化,大量〈a〉位错滑移的产生,使得变形后小角度晶界增加明显。晶粒中拉伸孪晶是试样在拉伸变形过程中产生的,而非在试样拉伸后的卸载过程中产生。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋广胜
陈强强
徐勇
李娟
张士宏
关键词 AZ31镁合金晶粒取向滑移Schmid因子拉伸孪晶    
AbstractIn-situ tracking on grain orientation evolution of AZ31 Mg alloy rolled sheet during tension along rolling direction at room temperature was conducted by the electron backscatter diffraction technique, and activations of slip systems and twinning during former deformation were analyzed. Analysis results show that, former deformation is accomplished mainly by 〈a〉 basal and prismatic slip activations, and there are not obvious changes for grain orientation, numerous 〈a〉 dislocation slip activations obviously increase the percentage of low angle grain boundaries. For extension twins within grain, they are activated in the process of specimen tension, but not in the process of unloading after tension.
Key wordsAZ31 Mg alloy    grain orientation    slip    Schmid factor(SF)    extension twin
收稿日期: 2014-08-22      出版日期: 2016-04-19
中图分类号:  TG146.2  
通讯作者: 宋广胜(1971-),男,副教授,博士,主要从事镁合金塑性加工技术研究,联系地址:辽宁省沈阳市道义经济开发区道义南大街37号沈阳航空航天大学材料科学与工程学院(110036)     E-mail: songgs17@163.com
引用本文:   
宋广胜, 陈强强, 徐勇, 李娟, 张士宏. AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J]. 材料工程, 2016, 44(4): 1-8.
SONG Guang-sheng, CHEN Qiang-qiang, XU Yong, LI Juan, ZHANG Shi-hong. Deformation Micro-mechanism of AZ31 Mg Alloy During Tension at Room Temperature by EBSD In-situ Tracking. Journal of Materials Engineering, 2016, 44(4): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.04.001      或      http://jme.biam.ac.cn/CN/Y2016/V44/I4/1
[1] 陈振华,严红革,陈吉华,等. 镁合金[M]. 北京:化学工业出版社,2004.202-205.
[2] LOU X Y, LI M, BOGER R K, et al. Hardening evolution of AZ31B Mg sheet[J]. International Journal of Plasticity,2007,23(1):44-86.
[3] 张丁非,戴庆伟,胡耀波,等. 镁合金板材轧制成型的研究进展[J]. 材料工程,2009,(10):85-90. ZHNG D F, DAI Q W, HU Y B, et al. Progress in the research on rolling formation of magnesium alloy sheet[J]. Journal of Materials Engineering,2009,(10):85-90.
[4] MARTIN E, CAPOLUNGO L, JIANG L, et al. Variant selection during secondary twinning in Mg-3%Al[J]. Acta Materialia, 2010,58(11):3970-3983.
[5] 罗晋如,刘庆,刘伟,等. AZ31镁合金板轧制过程中的{1011}-{1012}双孪生对板材组织、织构、力学性能的影响[J]. 金属学报,2011,47(12):1567-1574. LUO J R, LIU Q, LIU W, et al. The effect of {1011}-{1012} double twinning on the microstructure, texture and mechanical properties of AZ31 magnesium alloy sheet during rolling deformation[J]. Acta Metallurgica Sinica,2011,47(12):1567-1574.
[6] 李章刚. 镁合金板材的室温塑性变形机制研究[D]. 沈阳:中国科学院金属研究所,2007.54-56.
[7] YIN S, WANG C, DIAO Y, et al. Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy[J]. Journal of Materials Science and Technology,2011,27(1):29-34.
[8] AGNEW S,YOO M,TOME C.Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Materialia,2001,49(20):4277-4289.
[9] XIN Y C, JIANG J, CHAPUIS A, et al. Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression[J]. Materials Science and Engineering:A,2012,532:50-57.
[10] PEI Y, GODFREY A, JIANG J, et al. Extension twin variant selection during uniaxial compression of a magnesium alloy[J]. Materials Science and Engineering:A,2012,550(30):138-145.
[11] 陈振华,夏伟军,程永奇,等.镁合金织构与各向异性[J]. 中国有色金属学报,2005,15(1):1-11. CHEN Z H, XIA W J, CHENG Y Q, et al. Texture and anisotropy of magnesium alloys[J]. The Chinese Journal of Nonferrous Metals,2005,15(1):1-11.
[12] KESHAVARZ Z, BARNETT M R. In-situ investigation of twinning behaviour in Mg-3Al-1Zn[J]. Journal of Metals,2004,56:87-91.
[13] BARNEET M, KESHAVARZ Z, NAVE M. Microstructural features of rolled Mg-3Al-1Zn[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2005,36:1697-1702.
[14] LI H, BOEHLERT C, BIELER T, et al. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn(wt%) using in-situ SEM experiments[J]. Philosophical Magazine,2012,92(23):2923-2946.
[15] BOEHLERT C, CHEN Z, GUTIE I, et al. In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31[J].Acta Materialia,2012,60:1889-1904.
[16] BOEHLERT C, CHEN Z, CHAKKEDATH A E. In situ analysis of the tensile deformation mechanisms in extruded Mg-1Mn-1Nd(wt%)[J]. Philosophical Magazine,2013,93(6):598-617.
[17] KESHAVARZ Z, MATTHEW R. EBSD analysis of deformation modes in Mg-3Al-1Zn[J].Scripta Materialia,2006,55:915-918.
[18] KOIKE J, KOBAYASHI T, MUKAI T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys[J]. Acta Materialia,2003,51:2055-2065.
[19] KOIKE J, OHYAMA R. Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature[J]. Acta Materialia,2005,53:1963-1972.
[20] BOEHLERT C, CHEN Z, GUTIERREZ I, et al. In situ analysis of the tensile and tensile-creep deformation mechanisms in rolled AZ31[J]. Acta Materialia,2012,60(4):1889-1904.
[21] 黄洪涛,ANDREW G,刘伟,等. 多向压缩路径下AZ31镁合金孪生行为的EBSD研究[J]. 电子显微学报,2011,30(4-5):294-298. HUANG H T, ANDREW G, LIU W, et al. Study on twinning behaviors of during multi-directional compressions for AZ31 magnesium alloy by EBSD[J]. Journal of Chinese Electron Microscopy Society,2011,30(4-5):294-298.
[22] 江海涛,段晓鸽,蔡正旭,等.异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J].材料工程,2015,43(8):7-12. JIANG H T, DUAN X G, CAI Z X, et al. Superplastic process and deformation mechanism of asymmetrically rolled AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2015,43(8):7-12.
[23] 刘守法,周兆锋,李春风.热输入对AZ31镁合金FSP试样力学性能的影响[J].航空材料学报,2015,35(1):39-44. LIU S F, ZHOU Z F, LI C F. Effects of heat input on mechanical properties of AZ31 Mg alloy fabricated by FSP[J]. Journal of Aeronautical Materials,2015,35(1):39-44.
[24] SRINIVASARAO B, DUDAMELL N, PEREZ M. Texture analysis of the effect of non-basal slip systems on the dynamic recrystallization of the Mg alloy AZ31[J]. Materials Characterization,2013,75:101-107.
[1] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
[2] 许婷, 方晓英, 朱言利, 王铭, 尹文红, 郭红. 双相不锈钢中奥氏体沉淀相的晶粒取向及界面特征分布[J]. 材料工程, 2018, 46(2): 34-40.
[3] 张亮亮, 王希靖, 刘骁. 6082铝合金搅拌摩擦焊焊接过程中晶粒取向演化[J]. 材料工程, 2018, 46(10): 55-59.
[4] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[5] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[6] 黄本生, 陈想, 陈勇彬, 李永斌. 石油钻杆材料G105在不同条件下的疲劳断裂[J]. 材料工程, 2016, 44(2): 107-114.
[7] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[8] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[9] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[10] 毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
[11] 王国林, 刘高君, 王磊, 张铃欣. 轮胎胎面胶料共挤出成型的有限元仿真研究[J]. 材料工程, 2014, 0(2): 51-54.
[12] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[13] 邓娟利, 赵晓莉, 周传哲, 黎德育, 李宁. AZ31镁合金表面浸锌过程中混合电势与覆盖度关系研究[J]. 材料工程, 2012, 0(9): 19-22,27.
[14] 刘君, 郭学锋, 张忠明, 叶永南. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, 0(5): 70-75.
[15] 薛文斌, 陈廷芳, 李永良, 邹志锋, 刘晓龙, 赵衍华. AZ31镁合金搅拌摩擦焊接头微弧氧化表面防护研究[J]. 材料工程, 2012, 0(12): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn