Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (10): 71-78    DOI: 10.11868/j.issn.1001-4381.2016.000301
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究
郑顺丽, 李澄, 项腾飞, 胡玮, 丁诗炳, 王晶, 刘盼金
南京航空航天大学 材料科学与技术学院, 南京 210016
Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance
ZHENG Shun-li, LI Cheng, XIANG Teng-fei, HU Wei, DING Shi-bing, WANG Jing, LIU Pan-jin
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(12512 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 铝由于在潮湿的环境中很容易受到污染和损坏,从而严重影响了其美观性和用途。为了改善铝基材料的耐腐蚀性能,采用电化学阳极氧化法与十四酸修饰相结合的方式在铝基底上制备了超疏水涂层。通过场发射扫描电镜(FESEM)和X射线能量色散光谱(EDS)对涂层表面形貌和化学组成进行了表征。同时利用接触角测量仪、喷砂实验和电化学测试分别对涂层表面的润湿性、机械稳定性以及耐腐蚀性能进行了研究。结果表明:当阳极氧化电压为20V时,所制备的涂层为最佳铝基超疏水涂层,此时涂层的接触角为(155.2±0.5)°,滚动角为(3.5±1.3)°。其对应的腐蚀电流密度较铝基底降低了2个数量级,腐蚀电位从-0.629V正移到-0.570V,呈现出优异的耐腐蚀性能。此外,该涂层还具有良好的机械稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑顺丽
李澄
项腾飞
胡玮
丁诗炳
王晶
刘盼金
关键词 超疏水涂层阳极氧化耐蚀性稳定性    
Abstract:Aluminum (Al) can be easily contaminated or damaged after exposure in damp environments, which can adversely affect its aesthetic appearance and desired functionalities. To improve its corrosion resistance, a superhydrophobic coating was fabricated on Al by electrochemical anodization followed by modification with myristic acid. The surface morphology and chemical composition were characterized by using a field emission scanning electron microscope (FESEM) with attached energy dispersive X-ray spectrum (EDS). The surface wettability, mechanical stability as well as corrosion resistance were also investigated by contact angle measuring system, sandblasting test and electrochemical measurements. The results show that the optimal Al-based superhydrophobic coating with a static water contact angle of (155.2±0.5)° and a sliding angle of (3.5±1.3)° is obtained at the anodization voltage of 20V. The corresponding corrosion current density (Icorr) is reduced by 2 orders of magnitude and the corrosion potential (Ecorr) shifts from -0.629V to -0.570V compared to the bare Al substrate, indicating excellent corrosion resistance. Besides, the as-prepared optimal Al-based superhydrophobic coating also suggests good mechanical stability.
Key wordssuperhydrophobic coating    aluminum    anodization    corrosion resistance    stability
收稿日期: 2016-03-15      出版日期: 2017-10-18
中图分类号:  TB37  
通讯作者: 李澄(1959-),男,教授,博士,主要从事防护性与功能性表面涂层的研究,联系地址:江苏省南京市御道街29号南京航空航天大学材料科学与技术学院(210016),E-mail:licheng@nuaa.edu.cn     E-mail: licheng@nuaa.edu.cn
引用本文:   
郑顺丽, 李澄, 项腾飞, 胡玮, 丁诗炳, 王晶, 刘盼金. 阳极氧化法制备铝基超疏水涂层及其稳定性和耐蚀性的研究[J]. 材料工程, 2017, 45(10): 71-78.
ZHENG Shun-li, LI Cheng, XIANG Teng-fei, HU Wei, DING Shi-bing, WANG Jing, LIU Pan-jin. Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance. Journal of Materials Engineering, 2017, 45(10): 71-78.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000301      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/71
[1] FENG L B, CHE Y H, LIU X H, et al. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method[J]. Applied Surface Science, 2013, 283(15):367-374.
[2] SHE Z X, LI Q, WANG Z W, et al. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy[J]. ACS Applied Materials & Interfaces, 2012, 4(8):4348-4356.
[3] KUMAR D, WU X H, FU Q T, et al. Hydrophobic sol-gel coatings based on polydimethylsiloxane for self-cleaning applications[J]. Materials & Design, 2015, 86:855-862.
[4] 徐文骥, 宋金龙, 孙晶, 等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011(5):93-98. XU W J, SONG J L, SUN J, et al. Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011(5):93-98.
[5] 王晨玥, 杨文秀, 张洪敏, 等. 纯钛基体长效超疏水表面的低成本制备[J]. 材料工程, 2015, 43(11):13-18. WANG C Y, YANG W X, ZHANG H M, et al. Preparation of durable superhydrophobic surface on pure titanium substrate via low-cost route[J]. Journal of Materials Engineering, 2015, 43(11):13-18.
[6] ZHENG S L, LI C, FU Q T, et al. Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance[J]. Surface & Coatings Technology, 2015, 276:341-348.
[7] LAI Y K, GAO X F, ZHANG H F, et al. Designing superhydrophobic porous nanostructures with tunable water adhesion[J]. Advanced Materials, 2009, 21(37):3799-3803.
[8] ZHENG S L, LI C, FU Q T, et al. Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications[J]. Materials & Design, 2016, 93:261-270.
[9] LAI Y K, TANG Y X, GONG J J, et al. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging[J]. Journal of Materials Chemistry, 2012, 22(15):7420-7426.
[10] 晏忠钠, 车彦慧, 冯利邦, 等. 超疏水铝合金表面的防覆冰和防黏附行为[J]. 材料工程, 2015, 43(9):25-29. YAN Z N, CHE Y H, FENG L B, et al. Anti-icing and anti-adhesion behavior of superhydrophobic aluminum alloy surface[J]. Journal of Materials Engineering, 2015, 43(9):25-29.
[11] 曾泽延, 章哲承. 超疏水吸油性聚二乙烯基苯的制备及其油水分离性能[J]. 材料科学与工程学报, 2015, 33(2):293-297. ZENG Z Y, ZHANG Z C. Preparation and oil/water separation performance of super-hydrophobic and super-oleophilic poly divinyl benzene[J]. Journal of Materials Science and Engineering, 2015, 33(2):293-297.
[12] WU X H, FU Q T, KUMAR D, et al. Mechanically robust superhydrophobic and superoleophobic coatings derived by sol-gel method[J]. Materials & Design, 2016, 89:1302-1309.
[13] 连峰, 王增勇, 张会臣. 疏水/超疏水船用铝合金表面制备及其耐久性[J]. 材料工程, 2015, 43(1):49-53. LIAN F, WANG Z Y, ZHANG H C. Preparation of hydrophobic/superhydrophobic warship aluminium alloy surface and its durability[J]. Journal of Materials Engineering, 2015, 43(1):49-53.
[14] YU J, QIN L, HAO Y F, et al. Vertically aligned boron nitride nanosheets:chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity[J].ACS Nano, 2010, 4(1):414-422.
[15] SHEN Y Z, TAO H J, CHEN S L, et al. Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures[J]. RSC Advances, 2015, 5(3):1666-1672.
[16] QIAN B T, SHEN Z Q. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum,copper,and zinc substrates[J].Langmuir,2005,21(20):9007-9009.
[17] KANNARPADY G K, KHEDIR K R, ISHIHARA H, et al. Controlled growth of self-organized hexagonal arrays of metallic nanorods using template-assisted glancing angle deposition for superhydrophobic applications[J]. ACS Applied Materials & Interfaces, 2011, 3(7):2332-2340.
[18] GANESH V A, NAIR A S, RAUT H K, et al. Superhydrophobic fluorinated POSS-PVDF-HFP nanocomposite coating on glass by electrospinning[J]. Journal of Materials Chemistry, 2012, 22(35):18479-18485.
[19] DONG C S, GU Y, ZHONG M L, et al. Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching[J]. Journal of Materials Processing Technology, 2011, 211(7):1234-1240.
[20] YIN B, FANG L, HU J, et al. A facile method for fabrication of superhydrophobic coating on aluminum alloy[J]. Surface and Interface Analysis, 2012, 44(4):439-444.
[21] THIEME M, FRENZEL R, SCHMIDT S, et al. Generation of ultrahydrophobic properties of aluminium-a first step to self-cleaning transparently coated metal surfaces[J]. Advanced Engineering Materials, 2001, 3(9):691-695.
[22] BARKHUDAROV P M, SHAH P B, WATKINS E B, et al. Corrosion inhibition using superhydrophobic films[J]. Corrosion Science, 2008, 50(3):897-902.
[23] HAN J K, KIM J, CHOI Y C, et al. Structure of alumina nanowires synthesized by chemical etching of anodic alumina membrane[J]. Physica E, 2007, 36(2):140-146.
[24] XIAO Z L, HAN C Y, WELP U, et al. Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes[J]. Nano Letters, 2002, 2(11):1293-1297.
[25] LI Y, LING Z Y, CHEN S S, et al. Novel AAO films and hollow nanostructures fabricated by ultra-high voltage hard anodization[J]. Chemical Communications, 2010, 46(2):309-311.
[26] PENG S, DONG T, YANG X J, et al. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires[J]. ACS Applied Materials & Interfaces, 2014, 6(7):4831-4841.
[27] LI S Y, WANG J, LI Y, et al. Photoluminescent properties of anodic aluminum oxide films formed in a mixture of malonic and sulfuric acid[J]. Superlattices and Microstructures, 2014, 75:294-302.
[28] WANG J Y, LI C, YIN C Y, et al. Ultrasmall nanopores obtained by electric field enhanced one-step anodisation of aluminium alloy[J]. Surface & Coatings Technology, 2014, 258:615-623.
[29] TAO Y T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum[J]. Journal of the American Chemical Society, 1993, 115(10):4350-4358.
[30] YIN Y S, LIU T, CHEN S G, et al. Structure stability and corrosion inhibition of super-hydrophobic film on aluminum in seawater[J]. Applied Surface Science, 2008, 255(5):2978-2984.
[31] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40:546-551.
[32] XU W J, SONG J L, SUN J, et al. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces[J]. ACS Applied Materials & Interfaces, 2011, 3(11):4404-4414.
[1] 刘欢, 张瑞英, 李金轩, 杨森, 闫晗. TiO2粒径对Al-TiO2-C细化剂组织及细化效果的影响[J]. 材料工程, 2020, 48(8): 126-133.
[2] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[3] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[4] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[5] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[6] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[7] 芦刚, 查军辉, 严青松, 宋方睿, 于航. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48(7): 170-175.
[8] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[9] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[10] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[11] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[12] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[13] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[14] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[15] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn