Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 80-87    DOI: 10.11868/j.issn.1001-4381.2015.000728
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响
何跃1,2,3, 蒋团辉2, 刘阳夫2,3, 龚维1,2,3, 何力2,3
1 贵州师范大学 材料与建筑工程学院, 贵阳 550014;
2 国家复合改性聚合物材料工程技术研究中心, 贵阳 550014;
3 贵州大学 材料与冶金学院, 贵阳 550025
Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites
HE Yue1,2,3, JIANG Tuan-hui2, LIU Yang-fu2,3, GONG Wei1,2,3, HE Li2,3
1 School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550014, China;
2 National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550014, China;
3 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
全文: PDF(7543 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用型腔体积可控注塑发泡装置制备微发泡聚丙烯(PP)/粉末橡胶复合材料,通过橡胶粒子的分散性以及复合材料的结晶行为,研究不同橡胶粒子对聚丙烯复合材料发泡行为和力学性能的影响。结果表明:橡胶粒子的加入使微发泡聚丙烯材料的泡孔分布细密而均匀,微发泡聚丙烯/马来酸酐接枝聚丙烯/粉末丁腈胶(PP/PP-MAH/NBR)复合材料的发泡质量较理想,其泡孔密度和尺寸分别为7.64×106个/cm3,29.78μm;综合泡孔结构和力学性能,微发泡聚丙烯/聚丙烯接枝马来酸酐/粉末羧端基丁腈胶(PP/PP-MAH/CNBR)复合材料的力学性能最优,与纯PP比较其冲击强度提升了2.2倍,拉伸强度仅仅降低了26%,是理想的微发泡复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何跃
蒋团辉
刘阳夫
龚维
何力
关键词 聚丙烯橡胶粒子发泡行为结晶行为力学性能    
Abstract:Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.
Key wordspolypropylene    rubber powder    foaming behavior    crystallization behavior    mechanical property
收稿日期: 2015-06-09      出版日期: 2017-02-23
中图分类号:  TQ328.2  
通讯作者: 龚维(1974-),男,博士,教授,研究方向:发泡聚合物材料,联系地址:贵州省贵阳市白云区白云北路A2-6号(550014),gw20030501@163.com     E-mail: gw20030501@163.com
引用本文:   
何跃, 蒋团辉, 刘阳夫, 龚维, 何力. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2): 80-87.
HE Yue, JIANG Tuan-hui, LIU Yang-fu, GONG Wei, HE Li. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites. Journal of Materials Engineering, 2017, 45(2): 80-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000728      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/80
[1] NAM P H, MAITI P, OKAMOTO M, et al. Foam processing and cellular structure of polypropylene/clay nanocomposites[J]. Polymer Engineering & Science, 2002,42(9):1907-1918.
[2] KERAMATI M, GHASEMI I, KARRABI M. Microcellular foaming of PP/EPDM/organoclay nanocomposites:the effect of the distribution of nanoclay on foam morphology[J].Polymer Journal, 2012, 44(5):433-438.
[3] KERAMATI M, GHASEMI I, KARRABI M, et al. Production of microcellular foam based on PP/EPDM:the effects of processing parameters and nanoclay using response surface methodology[J]. E-Polymers, 2013,12(1):612-628.
[4] MAHARSIA R, GUPTA N, JERRO H D. Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams[J]. Materials Science & Engineering:A, 2005,417(1):249-258.
[5] GUPTA N, MAHARSIA R. Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications[J].Applied Composite Materials, 2005,12(3):247-261.
[6] GUPTA N, MAHARSIA R, JERRO H D. Enhancement of energy absorption characteristics of hollow glass particle filled composites by rubber addition[J]. Materials Science & Engineering:A,2004,395(1):233-240.
[7] GUPTA N, ZELTMANN S E, SHUNMUGASAMY V C, et al. Applications of polymer matrix syntactic foams[J]. JOM, 2014,66(2):245-254.
[8] SHARUDIN R W B, OHSHIMA M. Preparation of microcellular thermoplastic elastomer foams from polystyrene-b-ethylene-butylene-b-polystyrene (SEBS) and their blends with polystyrene[J].Journal of Applied Polymer Science, 2013,128(4):2245-2254.
[9] SHAKARAMI K, DONIAVI A, AZDAST T, et al. Microcellular foaming of PVC/NBR thermoplastic elastomer[J]. Materials and Manufacturing Processes, 2013,28(8):872-878.
[10] 程实,顾建华,常乐,等. PP/GF/EPDM微发泡复合材料制备及性能研究[J]. 塑料科技,2014,42(5):55-58. CHENG S, GU J H,CHANG L, et al. Research on properties of PP/GF/EPDM microcellular foam composite materials and its preparation[J]. Plastics Science and Technology,2014,42(5):55-58.
[11] 杨继年,李子全,胡孝昀,等. POE共混增韧二次发泡聚丙烯的力学性能[J].高分子材料科学与工程,2008,24(11):95-98. YANG J N, LI Z Q, HU X Y,et al. Mechanical performance of secondary-foamed polypropylene toughened by ethylene-1-octene copolymer[J]. Polymeric Materials Science and Engineering, 2008, 24(11):95-98.
[12] 张平,杨永,王晓军,等. PP/HDPE/EPDM复合体系微孔发泡实验[J].塑料,2010,39(1):61-63. ZHANG P, YANG Y, WANG X J,et al. Experimental on microcellular foaming of PP/HDPE/EPDM blends[J].Plastics,2010,39(1):61-63.
[13] GONG W, LIU K J, ZHANG C,et al. Foaming behavior and mechanical properties of microcellular PP/SiO2 composites[J]. International Polymer Processing, 2012,24(2):181-186.
[14] GONG W, GAO J C, JIANG M,et al. Modeling and characterization of the relationship between cell size and mechanical behavior of microcellular PP/mica composites[J]. International Polymer Processing, 2010,25(4):270-274.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn