Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 1-12    DOI: 10.11868/j.issn.1001-4381.2017.000475
  综述 本期目录 | 过刊浏览 | 高级检索 |
铁基非晶涂层的研究进展
梁秀兵1, 程江波2, 冯源2, 陈永雄1, 徐滨士1
1 陆军装甲兵学院 机械产品再制造国家工程研究中心, 北京 100072;
2 河海大学 力学与材料学院, 南京 211100
Research Progress on Fe-based Amorphous Coatings
LIANG Xiu-bing1, CHENG Jiang-bo2, FENG Yuan2, CHEN Yong-xiong1, XU Bin-shi1
1 National Engineering Research Center for Mechanical Product Remanufacturing, Academy of Army Armored Force, Beijing 100072, China;
2 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
全文: PDF(2108 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述铁基非晶涂层的研究进展,介绍典型的铁基非晶涂层合金体系及分类,重点讨论热喷涂和激光熔覆制备铁基非晶涂层技术的现状、进展和发展趋势,阐述铁基非晶涂层的主要力学性能特点及目前的应用概况。在综述铁基非晶涂层目前存在主要问题的基础上,指出今后的发展方向应体现开发高非晶含量铁基涂层的制备工艺与技术,研制新型低成本高性能铁基非晶涂层材料以及拓宽铁基非晶涂层的应用领域等趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁秀兵
程江波
冯源
陈永雄
徐滨士
关键词 铁基非晶合金涂层力学性能应用研究现状    
Abstract:The latest research progresses on Fe-based amorphous coatings were reviewed. The typical alloy system and the classification of Fe-based amorphous coatings were clarified. The status, progress and development of the Fe-based amorphous coatings prepared by thermal spray processing and laser cladding process were discussed. The main mechanical properties and potential applications of the Fe-based amorphous coatings were also described. Furthermore, based on the main problems mentioned above, the future development of the Fe-based amorphous coatings was discussed, including the exploitation preparation technologies of high amorphous content of the Fe-based coatings, the development of the low cost and high performance Fe-based coating alloys system, the broadening application of Fe-based amorphous coatings, and so on.
Key wordsFe-based amorphous alloy    coating    mechanical property    application    research progress
收稿日期: 2017-04-20      出版日期: 2017-09-16
中图分类号:  TG174.442  
通讯作者: 梁秀兵(1974-),男,博士,研究员,从事亚稳态材料、表面工程及再制造关键技术研究,联系地址:北京市丰台区杜家坎21号再制造工程系(100072),E-mail:liangxb_d@163.com     E-mail: liangxb_d@163.com
引用本文:   
梁秀兵, 程江波, 冯源, 陈永雄, 徐滨士. 铁基非晶涂层的研究进展[J]. 材料工程, 2017, 45(9): 1-12.
LIANG Xiu-bing, CHENG Jiang-bo, FENG Yuan, CHEN Yong-xiong, XU Bin-shi. Research Progress on Fe-based Amorphous Coatings. Journal of Materials Engineering, 2017, 45(9): 1-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000475      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/1
[1] KLEMENT W, WILLENS R H, DUWEZ P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187(4740):869-870.
[2] ANDERSON P W. Through the glass lightly[J]. Science, 1995, 267(5204):1615-1616.
[3] KENNEDY D, NORMAN C. What don't we know?[J]. Science, 2005, 309(5743):75.
[4] JOHNSON W. Is metallic glass poised to come of age?[J]. Nature Materials, 2015, 14(6):553-555.
[5] TREXLER M M, THADHANI N N. Mechanical properties of bulk metallic glasses[J]. Progress in Materials Science, 2010, 55:759-839.
[6] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5):177-351. WANG W H. The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33(5):177-351.
[7] INOUE A, KONG F L, ZHU S L, et al. Production methods and properties of engineering glass alloys[J]. Intermetallics,2015, 58:20-30.
[8] CHENG J B, LIANG X B, WANG Z H, et al. Microstructure and mechanical properties of FeBSiNb metallic glass coatings by twin wire arc spraying[J]. Journal of Thermal Spray Technology,2013, 22(4):471-477.
[9] CHENG J B, LIU Q, SUN B, et al. Structural and tribological characteristics of nanoscale FePSiBNb coatings[J]. Journal of Thermal Spray Technology, 2017, 26(3):530-538.
[10] BRANAGAN D J, BREITSAMETER M, MEACHAM B E, et al. High-performance nanoscale composite coatings for boiler applications[J]. Journal of Thermal Spray Technology, 2005, 14(2):196-204.
[11] WU Y, LIN P, CHU C, et al. Cavitation erosion characteristics of a Fe-Cr-Si-B-Mn coating fabricated by high velocity oxy-fuel(HVOF) thermal spray[J]. Materials Letters, 2007, 61(8):1867-1872.
[12] 傅斌友,贺定勇,赵力东. 电弧喷涂铁基非晶涂层的磨粒磨损性能研究[J]. 摩擦学学报, 2008, 28(5):428-432. FU B Y, HE D Y, ZHAO L D. Abrasive resistance of arc sprayed coatings containing Fe-based amorphous phase[J]. Tribology, 2008, 28(5):428-432.
[13] 马浩然. Fe基非晶涂层的制备及其耐磨防腐性能研究[D]. 上海:上海大学, 2016. MA H R. Fabrication,corrosion and wear properties of Fe-based amorphous coatings[D]. Shanghai:Shanghai University, 2016.
[14] YAO H H, ZHOU Z, WANG Y M, et al. Microstructure and properties of FeCrB alloy coatings prepared by wire-arc spraying[J]. Journal of Thermal Spray Technology, 2017, 26(3):483-491.
[15] BLINK J, FARMER J, CHOI J, et al. Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings[J]. Metallurgical and Materials Transactions A,2009, 40(6):1344-1354.
[16] CHENG J B, LIANG X B, XU B S, et al. Formation and properties Fe-based amorphous/nanocrystalline coating prepared by wire arc spraying process[J]. Journal of Non-Crystalline Solids, 2009, 355(3436):1673-1678.
[17] ZHU Y Y, LI Z G, HUANG J, et al. Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings[J]. Applied Surface Science, 2012, 261(19):896-901.
[18] 林尽染, 王泽华, 林萍华, 等. FeNiCrBSiNbW非晶涂层组织及空蚀性能[J]. 材料热处理学报, 2012, 33(12):132-136. LIN J R, WANG Z H, LIN P H, et al. Microstructure and cavitation erosion behavior of FeNiCrBSiNbW amorphous coating[J]. Transactions of Materials and Heat Treatment, 2012, 33(12):132-136.
[19] 梁秀兵, 王慧, 商俊超, 等. FeCrBSiNb非晶涂层的制备及其性能[J]. 中国表面工程, 2017, 30(1):101-106. LIANG X B, WANG H, SHANG J C, et al. Fabrication and properties of FeCrBSiNb amorphous coating[J]. China Surface Engineering, 2017, 30(1):101-106.
[20] 张勇. 非晶和高熵合金[M]. 北京:科学出版社, 2010. ZHANG Y. Amorphous and high entropy alloys[M]. Beijing:Science Press, 2010.
[21] LIU L, ZHANG C. Fe-based amorphous coatings:structures and properties[J]. Thin Solid Films, 2014, 561:70-86.
[22] MIURA H, ISA S, OMURO K. Production of amorphous iron-nickel based alloys by flame-spray quenching and coatings on metal substrates[J]. Transactions of the Japan Institute of Metals, 1984, 25(4):284-291.
[23] KISHITAKE K, ERA H, OTSUBO F. Thermal-sprayed Fe-10Cr-13P-7C amorphous coatings possessing excellent corrosion resistance[J]. Journal of Thermal Spray Technology, 1996, 5(4):476-482.
[24] OTSUBO F, KISHITAKE K. Corrosion resistance of Fe-16%Cr-30%Mo-(C,B,P) amorphous coatings sprayed by HVOF and APS processes[J]. Materials Transactions, 2005, 46(1):80-83.
[25] KOBAYASHI A, YANO S, KIMURA H, et al. Fe-based metallic glass coating produced by smart plasma spraying process[J]. Materials Science and Engineering:B, 2008, 148(1/3):110-113.
[26] YUGESWARAN S, KOBAYASHI A. Metallic glass coatings fabricated by gas tunnel type plasma spraying[J].Vacuum,2014, 110:177-182.
[27] BRANAGAN D J, SWANK W D, HAGGARD D C, et al. Wear-resistant amorphous and nanocomposite steel coatings[J]. Metallurgical and Materials Transactions A, 2001, 32(10):2615-2621.
[28] BRANAGAN D J, SWANK W D, MEACHAM B E. Maximizing the glass fraction in iron-based high velocity oxy-fuel coatings[J]. Metallurgical and Materials Transactions A, 2009, 40(6):1306-1313.
[29] FARMER J C, CHOU J S, SAW C, et al. Iron-based amorphous metals:high-performance corrosion-resistance material development[J].Metallurgical and Materials Transactions A, 2009, 40(6):1289-1305.
[30] FENINECHE N E, CHERIGUI M, FERAOUN H I, et al. FeNb and FeSi thermal spraying coatings:microstructure and first principle calculations[J]. Materials Science and Engineering:B, 2004, 107(1):27-32.
[31] CHERIGUI M, FERAOUN H I, FENINEHE N E, et al. Structure of amorphous iron-based coatings processed by HVOF and APS thermally spraying[J]. Materials Chemistry and Physics, 2004, 85(1):113-119.
[32] CHOKETHAWAI K, MCCARTNEY D G, SHIPWAY P H. Microstructure evolution and thermal stability of an Fe-based amorphous alloy powder and thermally sprayed coatings[J]. Journal of Alloys and Compounds, 2009, 480(2):351-359.
[33] KUMAR S, KIM J, KIM H, et al. Phase dependence of Fe-based bulk metallic glasses on properties of thermal spray coatings[J]. Journal of Alloys and Compounds, 2009, 475(1/2):L9-L12.
[34] MOVAHEDI B, ENAYATI M H, WONG C C. Structural and thermal behavior of Fe-Cr-Mo-P-B-C-Si amorphous and nanocrystalline HVOF coatings[J]. Journal of Thermal Spray Technology, 2010, 19(5):1093-1099.
[35] JUNG S, DO J, LEE D, et al. Design of cost-effective Fe-based amorphous coating alloys having high amorphous forming ability by thermodynamic calculation[J]. Metallurgical Metal International, 2014, 20(4):577-583.
[36] KOGA G Y, SCHULZ R, SAVOIE S, et al. Microstructure and wear behavior of Fe-based amorphous HVOF coatings produced from commercial precursors[J]. Surface and Coatings Technology, 2017, 309:938-944.
[37] 于宗汉, 王铀, 刘家俊, 等. M80S20喷涂层、喷熔层及激光涂敷层的显微组织和耐磨性之研究[J].摩擦学学报, 1993, 13(2):121-130. YU Z H, WANG Y, LIU J J, et al. Research on the microstructure and wear resistance of M80S20 alloy coating produced by flame spray, flame spray welding and laser remelting[J]. Tribology, 1993, 13(2):121-130.
[38] 向兴华,刘正义, 朱晖朝. Fe基非晶合金涂层的等离子喷涂制备工艺研究[J]. 材料工程,2002(2):10-12. XIANG X H, LIU Z Y, ZHU H Z. Fabrication of Fe base amorphous alloy coating by plasma spraying technology[J]. Journal of Materials Engineering, 2002(2):10-12.
[39] 潘继岗, 樊自拴, 孙冬柏, 等. 采用两种喷涂技术制备铁基合金涂层的摩擦磨损特性研究[J]. 摩擦学学报,2005, 25(5):412-415. PAN J G, FAN Z S, SUN D B, et al. Wear resistance of iron alloy coatings deposited by two spraying technologies[J]. Tribology, 2005, 25(5):412-415.
[40] 王翠玲, 吴玉萍, 张萍. 超音速火焰喷涂Fe基非晶/纳米晶涂层的组织性能特征[J]. 中国表面工程,2005, 2(2):19-22. WANG C L, WU Y P, ZHANG P. Microstructure and properties of HVOF sprayed Fe-based amorphous and nano-crystalline coating[J]. China Surface Engineering,2005, 2(2):19-22.
[41] ZHOU Z, WANG L, HE D Y, et al. Microstructure and electrochemical behavior of Fe-based amorphous metallic coatings fabricated by atmospheric plasma spraying[J]. Journal of Thermal Spray Technology, 2011, 20(1/2):344-350.
[42] XU P, ZHANG C, WANG W, et al. Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating[J]. Electrochimica Acta, 2016, 206:61-69.
[43] ZHANG S D, WU J, QI W B, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel[J]. Corrosion Science, 2016, 110:57-70.
[44] WANG Y, LI K Y, SCENINI F, et al. The effect of residual stress on the electrochemical corrosion behavior of Fe-based amorphous coatings in chloride-containing solutions[J]. Surface and Coatings Technology, 2016, 302:27-38.
[45] AN Y L, HOU G L, CHEN J, et al. Microstructure and tribological properties of iron-based metallic glass coatings prepared by atmospheric plasma spraying[J]. Vacuum, 2014, 107:132-140.
[46] CONCUSTELL A, HENAO J, DOSTA S, et al. On the formation of metallic glass coatings by means of cold gas spray technology[J]. Journal of Alloys and Compounds, 2015, 651:764-772.
[47] WANG G, HUANG Z, XIAO P, et al. Spraying of Fe-based amorphous coating with high corrosion resistance by HVAF[J]. Journal of Manufacturing Processes, 2016, 22:34-38.
[48] BORISOVA A L, MITZ I V, PATON E O, et al. Arc sprayed coatings of ferroalloy-base flux-cored wires[C]//Proceedings of the 1st International Thermal Spray Conference:Thermal Spray-Surface Engineering via Applied Research.Montreal,Canada:ASM International,2000:705-708.
[49] GEORGIEVA P, THORPE R, YANSHI A, et al. Nanocomposite materials:an innovative turnover for wire arc spraying technology[J]. Advanced Materials & Processes, 2006, 164(8):68-69.
[50] ZHOU J, WALLESER J K, MEACHAM B E, et al. Novel in situ transformable coating for elevated-temperature applications[J]. Journal of Thermal Spray Technology, 2010, 19(5):950-957.
[51] 郭金花, 吴嘉伟, 倪晓俊, 等. 电弧喷涂含非晶相的Fe基涂层的电化学行为[J]. 金属学报,2007, 43(7):780-784. GUO J H, WU J W, NI X J, et al. Electrochemical behavior of Fe-based coating containing amorphous phase prepared by electric arc spraying[J]. Acta Metallurgica Sinica, 2007, 43(7):780-784.
[52] 郭金花, 陆曹卫, 倪晓俊, 等. 电弧喷涂Fe基非晶硬质涂层的组织及性能研究[J]. 中国表面工程, 2006, 19(5):45-48. GUO J H, LU C W, NI X J, et al. Microstructure and properties of Fe-based amorphous hard coatings prepared by electric arc spraying[J]. China Surface Engineering, 2006, 19(5):45-48.
[53] FU B Y, HE D Y, ZHAO L D. Effect of heat treatment on the microstructure and mechanical properties of Fe-based amorphous coatings[J]. Journal of Alloys and Compounds, 2009, 480(2):422-427.
[54] 牛卫杰,宋晓勇,高守阳, 等. 高速电弧喷涂技术制备Fe基非晶涂层及其性能[J]. 电焊机, 2015, 45(8):210-213. NIU W J, SONG X Y, GAO S Y, et al. High velocity arc spraying preparation for Fe-based amorphous coatings and its properties[J]. Electric Welding Machine, 2015, 45(8):210-213.
[55] CHENG J B, ZHAO S, LIU D, et al. Microstructure and fracture toughness of the FePSiB-based amorphous/nanocrystalline coatings[J]. Materials Science and Engineering:A, 2017, 696:341-347.
[56] JONES H. Observations on a structural transition in aluminium alloys hardened by rapid solidification[J]. Materials Science and Engineering, 1969, 5(1):1-18.
[57] BASU A, SAMANT A N, HARIMKAR S P, et al. Laser surface coating of Fe-Cr-Mo-Y-B-C bulk metallic glass composition on AISI 4140 steel[J]. Surface and Coatings Technology, 2008, 202(12):2623-2631.
[58] MATTHEWS D T A, OCELÍK V, BRANAGAN D, et al. Laser engineered surfaces from glass forming alloy powder precursors:microstructure and wear[J]. Surface and Coatings Technology, 2009, 203(13):1833-1843.
[59] BALLA V K, BANDYOPADHYAY A. Laser processing of Fe-based bulk amorphous alloy[J]. Surface and Coatings Technology, 2010, 205(7):2661-2667.
[60] MOJAVER R, MOJTAHEDI F, SHAHVERDI H R, et al. Study on feasibility of producing an amorphous surface layer of Fe49Cr18Mo7B16C4Nb3 by pulsed Nd:YAG laser surface melting[J]. Applied Surface Science, 2013, 264:176-183.
[61] KATAKAM S, KUMAR V, SANTHANAKRISHNAN S, et al. Laser assisted Fe-based bulk amorphous coating:thermal effects and corrosion[J]. Journal of Alloys and Compounds, 2014, 604(9):266-272.
[62] 杨洗陈. Fe(Ni)CrSiB合金激光熔敷层的电化学性能[J]. 中国腐蚀与防护学报, 1989, 9(1):67-70. YANG X C. The electrochemical behavior of laser cladding casings of Fe(Ni)CrSiB alloys[J]. Journal of Chinese Society of Corrosion and Protection, 1989, 9(1):67-70.
[63] ZHU Q J, QU S Y, WANG X H, et al. Synthesis of Fe-based amorphous composite coatings with low purity materials by laser cladding[J]. Applied Surface Science, 2007, 253(17):7060-7064.
[64] WU X L, HONG Y S. Fe-based thick amorphous-alloy coating by laser cladding[J]. Surface and Coatings Technology, 2001, 141(2/3):141-144.
[65] 王彦芳, 栗荔, 鲁青龙, 等. 不锈钢表面激光熔覆铁基非晶涂层研究[J]. 中国激光, 2011, 38(6):177-180. WANG Y F, LI L, LU Q L, et al. Laser cladding Fe-based amorphous coatings on stainless substrate[J]. Chinese Journal of Lasers, 2011, 38(6):177-180.
[66] ZHANG P L, YAN H, YAO C W, et al. Synthesis of Fe-Ni-B-Si-Nb amorphous and crystalline composite coatings by laser cladding and remelting[J]. Surface and Coatings Technology, 2011, 206(6):1229-1236.
[67] ZHU Y Y, LI Z G, LI R F, et al. High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating:layered microstructure and properties[J]. Surface and Coatings Technology, 2013, 235:699-705.
[68] 张琪, 孙璐璐, 逄淑杰, 等. 耐腐蚀Fe-Cr-Mo-C-B合金的激光表面非晶化及其对结构和性能的影响[J]. 航空学报, 2014, 35(10):2881-2888. ZHANG Q, SUN L L, PANG S J, et al. Surface vitrification of a corrosion-resistant Fe-Cr-Mo-C-B alloy by laser surface treatment and its effect on microstructure and properties[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2881-2888.
[69] 付琴, 胡树兵. 激光熔覆制备Fe-Mo-Ni-Si-B非晶纳米晶复合涂层的性能[J]. 材料热处理学报, 2015, 36(11):209-213. FU Q, HU S B. Properties of Fe-Mo-Ni-Si-B amorphous nanocrystalline composite coating fabricated by laser cladding[J]. Transactions of Materials and Heat Treatment, 2015, 36(11):209-213.
[70] WANG Q Y, XI Y C, ZHAO Y H, et al. Effects of laser re-melting and annealing on microstructure, mechanical property and corrosion resistance of Fe-based amorphous/crystalline composite coating[J]. Materials Characterization, 2017, 127:239-247.
[71] OTSUBO F, ERA H, KISHITAKE K. Formation of amorphous Fe-Cr-Mo-8P-2C coatings by the high velocity oxy-fuel process[J]. Journal of Thermal Spray Technology, 2000, 9(4):494-498.
[72] 郭瑞强. HVAF与HVOF铁基非晶涂层的结构与性能研究[D]. 武汉:华中科技大学, 2011. GUO R Q. Structure and performance of Fe-based amorphous coatings prepared by HVAF and HVOF[D]. Wuhan:Huazhong University of Science and Technology, 2011.
[73] KATAKAM S, SANTHANAKRISHNAN S, DAHOTRE N B. Fe-based amorphous coatings on AISI 4130 structural steel for corrosion resistance[J]. JOM, 2012, 64(6):709-715.
[74] 张诚. 非晶涂层的制备、结构与性能研究[D]. 武汉:华中科技大学, 2012. ZHANG C. Fabrication, structure and properties of amorphous metallic coatings[D]. Wuhan:Huazhong University of Science and Technology, 2012.
[75] ZHANG S D, WU J, QI W B, et al. Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel[J]. Corrosion Science, 2016, 110:57-70.
[76] CHENG J B, LIANG X B, XU B S. Effects of crystallization on the corrosion resistance of arc-sprayed FeBSiNb coatings[J]. Journal of Thermal Spray Technology, 2014, 23(3):373-379.
[77] WONG C J, LI J C M. Wear behavior of an amorphous alloy[J]. Wear, 1984,98(8):45-61.
[78] MIYOSHI K, BUCKLEY D H. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior[J]. Wear, 1986, 110(3/4):295-313.
[79] YE X, SHIN Y C. Synthesis and characterization of Fe-based amorphous composite by laser direct deposition[J]. Surface and Coatings Technology, 2014, 239:34-40.
[80] YASIR M, ZHANG C, WANG W, et al. Wear behaviors of Fe-based amorphous composite coatings reinforced by Al2O3 particles in air and in NaCl solution[J]. Materials & Design, 2015, 88:207-213.
[81] YASIR M, ZHANG C, WANG W, et al. Enhancement of impact resistance of Fe-based amorphous coating by Al2O3 dispersion[J]. Materials Letters, 2016, 171:112-116.
[82] CHENG J B, LIU D, LIANG X B, et al. Wear behaviors of arc-sprayed FeBSiNb amorphous coatings[J]. Tribology Letters, 2015, 60:22.
[83] CHENG J B, LIANG X B, WANG Z H, et al. Dry sliding friction and wear properties of metallic glass coating and martensite stainless coating[J]. Tribology International, 2013, 60:140-146.
[84] CHENG J B, LIANG X B, XU B S. Devitrification of arc-sprayed FeBSiNb amorphous coatings:effects on wear resistance and mechanical behavior[J]. Surface and Coatings Technology, 2013, 235:720-726.
[85] CHENG J B, LIANG X B, CHEN Y X, et al. High temperature erosion resistance of FeBSiNb amorphous coatings deposited by arc spraying for boiler applications[J]. Journal of Thermal Spray Technology, 2013, 22(5):820-827.
[86] BLINK J, FARMER J, CHOI J, et al. Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings[J]. Metallurgical and Materials Transactions A, 2009, 40(6):1344-1354.
[87] FARMER J C, HASLAM J J, DAY S D, et al. Corrosion resistance of thermally sprayed high-boron iron-based amorphous-metal coatings:Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2.4[J]. Journal of Materials Research, 2007, 22:2297-2311.
[88] CHERGUI M, FENINECHE N E, JI G, et al. Microstructure and magnetic properties of Fe-Si-based coatings produced by HVOF thermal spraying process[J]. Journal of Alloys and Compounds, 2007, 427(1/2):281-290.
[89] 赵新彬, 吴嘉伟, 倪晓俊, 等. 等离子喷涂FeCrMoSnPBSiC非晶合金涂层的电磁屏蔽性能[J]. 金属功能材料, 2008, 15(4):19-21. ZHAO X B, WU J W, NI X J, et al. Electromagnetic shielding performance of FeCrMoSnPBSiC amorphous alloy coating by plasma spraying[J]. Metallic Functional Materials, 2008, 15(4):19-21.
[90] JI G, GROSDIDER T, LIAO H L, et al. Spray forming thick nanostructured and microstructured FeAl deposits[J]. Intermetallics, 2005, 13(6):596-607.
[91] 程江波,梁秀兵,王泽华,等. 高速电弧喷涂制备FeBSiNb厚非晶涂层研究[J]. 稀有金属材料与工程, 2013, 42(增刊2):283-287. CHENG J B, LIANG X B, WANG Z H, et al. Synthesis of FeBSiNb metallic glass thick coatings by wire arc spray processing[J]. Rare Metal Materials and Engineering, 2013, 42(Suppl 2):283-287.
[92] PAULY S, LÖBER L, PETTERS R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1/2):37-41.
[1] 苏再军, 杨树忠, 刘楚明, 杨新华, 刘先兰. Zn对铸态Mg-Y-Nd-Zr合金组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 116-122.
[2] 叶伟杰, 陈楷航, 蔡少龄, 陈利科, 钟同苏, 王小英. 纳米银的合成及其抗菌应用研究进展[J]. 材料工程, 2017, 45(9): 22-30.
[3] 李娜, 马兆昆, 陈铭, 宋怀河, 李昂, 贾月荣. 石墨烯/聚酰亚胺复合石墨纤维的结构与性能[J]. 材料工程, 2017, 45(9): 31-37.
[4] 杨旭东, 陈亚军, 师春生, 赵乃勤. 球磨工艺对原位合成碳纳米管增强铝基复合材料微观组织和力学性能的影响[J]. 材料工程, 2017, 45(9): 93-100.
[5] 杜际雨, 李方义, 鹿海洋, 商建通, 李振. 大气等离子喷涂NiCrBSi-Mo/Ni涂层中黏结层对NiCrBSi-Mo复合工作层性能的影响[J]. 材料工程, 2017, 45(9): 86-92.
[6] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[7] 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45(8): 38-42.
[8] 张显峰, 陆政, 高文理, 曹亚雷, 冯朝辉. 2A66铝锂合金板材各向异性研究[J]. 材料工程, 2017, 45(7): 7-12.
[9] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[10] 靳磊, 崔向中, 王纯, 周国栋, 姜春竹, 李其连, 杨璟. 钇硅酸盐材料力学性能的第一性原理研究[J]. 材料工程, 2017, 45(7): 48-53.
[11] 樊振中, 熊艳才, 陆政, 孙刚, 王胜强. Al-7Sn-1.1Ni-Cu-0.2Ti轴承合金微观组织与力学性能[J]. 材料工程, 2017, 45(6): 8-16.
[12] 刘占勇, 左孝青, 钟子龙, 李威威. 半固态触变挤压对ZA27合金组织和力学性能的影响[J]. 材料工程, 2017, 45(6): 17-23.
[13] 潘晖, 赵海生. 镍基钎料钎焊K465高温合金大间隙接头组织与性能研究[J]. 材料工程, 2017, 45(5): 86-93.
[14] 张国君, 武玉英, 杨化冰, 刘桂亮, 孙谦谦, 刘相法. 抗Zr“中毒”Al-Ti-B-C中间合金对7050铝合金力学性能的影响[J]. 材料工程, 2017, 45(4): 1-8.
[15] 王逸群, 宋鹏, 季强, 廖红星, 陆建生. H2O和Y(O)对NiCoCrAl热障涂层高温氧化的影响[J]. 材料工程, 2017, 45(4): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn