Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (9): 101-107    DOI: 10.11868/j.issn.1001-4381.2015.000822
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
5A06铝合金中厚板反拉深变形行为
张志超1, 徐永超1,2, 苑世剑1,2
1 哈尔滨工业大学 金属精密热加工国家级重点实验室, 哈尔滨 150001;
2 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
Deformation Behavior of Reverse Deep Drawing of 5A06 Aluminum Alloy Plate
ZHANG Zhi-chao1, XU Yong-chao1,2, YUAN Shi-jian1,2
1 National Key Laboratory of Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China;
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(4000 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 中厚板变形过程中的弯曲和反弯曲效应影响其拉深变形能力。本工作以航空航天常用的5A06铝合金筒形件为研究对象,采用厚度为4.5mm的中厚板进行反拉深数值模拟和实验研究,分析了变形过程中应力、应变分布特点,讨论了3种凹模截面结构形式下的变形方式,以及应变路径随着凹模圆角变化规律。结果表明:凹模内圆角与直壁区过渡区在壁厚方向上存在应力和应变梯度,并在该处外侧产生最大径向拉应力,导致了拉深破裂的发生。采用半圆形凹模截面结构时,极限拉深深度达到203mm,相对于平面凹模结构增加了40%。半圆形凹模结构能减小弯曲效应,有效降低过渡区的应力梯度和最大应力数值,有利于提高5A06铝合金中厚板拉深变形能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志超
徐永超
苑世剑
关键词 铝合金中厚板拉深破裂    
Abstract:The limit drawing ratio is influenced by the bending and unbending effect during reverse deep drawing of plate. The 5A06 aluminum alloy plate widely applied in aerospace industry was used, and the reverse deep drawing of the 4.5mm thick plate was investigated experimentally and numerically. The stress and strain distributions of plate were analyzed, the deformation behaviour was discussed for three types of cross section of die during the reverse deep drawing process; moreover, the changing rule of strain paths with the die profile was also discussed. Results show that a maximum radial stress is induced by the bending effect at the transient region between the inside die radius and straight wall, where a radial stress and strain gradient along the thickness direction appears and the fracture is easy to occur. For the semi-circle profiled die structure, the limited punch stroke is 203mm which is increased by 40% than that for the die with a planar profile section. The semi-circle profiled die structure can reduce the bending effect, effectively reduce the stress gradient and the maximum stress value in the transient region, and is helpful to improve the limit drawing ratio of the 5A06 aluminum alloy plate.
Key wordsaluminum alloy    plate    deep drawing    fracture
收稿日期: 2015-07-01      出版日期: 2017-09-16
中图分类号:  TG386.3  
通讯作者: 徐永超(1974-),男,教授,博导,主要从事板材流体高压成形工艺与装备、航空航天轻质难变形合金热成形工艺与装备研究,E-mail:yongchaoxu@hit.edu.cn     E-mail: yongchaoxu@hit.edu.cn
引用本文:   
张志超, 徐永超, 苑世剑. 5A06铝合金中厚板反拉深变形行为[J]. 材料工程, 2017, 45(9): 101-107.
ZHANG Zhi-chao, XU Yong-chao, YUAN Shi-jian. Deformation Behavior of Reverse Deep Drawing of 5A06 Aluminum Alloy Plate. Journal of Materials Engineering, 2017, 45(9): 101-107.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000822      或      http://jme.biam.ac.cn/CN/Y2017/V45/I9/101
[1] 董鹏, 孙大千, 李洪梅, 等. 6005A-T6铝合金搅拌摩擦焊接头组织与力学性能特征[J]. 材料工程, 2012(4):27-31. DONG P, SUN D Q, LI H M, et al. Microstructural and mechanical characteristics of friction stir welded 6005A-T6 aluminium alloy[J]. Journal of Materials Engineering, 2012(4):27-31.
[2] 刘杰, 杨景宏, 韩凤武, 等. 厚板铝合金搅拌摩擦焊匙孔补焊接头组织与性能[J]. 材料工程, 2012(7):29-33. LIU J, YANG J H, HAN F W, et al. Microstructures and properties of thickness aluminium alloy eleocellarium repairing welding joint by friction stir welding[J]. Journal of Materials Engineering, 2012(7):29-33.
[3] ESCHE S K, AHMETOGLU M A, KINZEL G L, et al. Numerical and experimental investigation of redrawing of sheet metals[J]. Journal of Materials Processing Technology, 2000, 98(1):17-24.
[4] ESCHE S K, KHAMITKAR S, KINZEL G L, et al. Process and die design for multi-step forming of round parts from sheet metal[J]. Journal of Materials Processing Technology, 1996, 59(1):24-33.
[5] PARSA M H, YAMAGUCHI K, TAKAKURA N, et al. Consideration of the re-drawing of sheet metals based on finite element simulation[J]. Journal of Materials Processing Technology, 1994, 47(1/2):87-101.
[6] 江学强, 吉卫, 曹海桥, 等. 厚壁筒形件热拉深成形数值模拟及工艺研究[J]. 热加工工艺, 2014, 43(11):148-150. JIANG X Q, JI W, CAO H Q, et al. Numerical simulation and technical study of hot drawing forming thick-wall cylinder[J]. Hot Working Technology, 2014, 43(11):148-150.
[7] CHUNG S Y. Stress analysis of reverse redrawing of cylindrical shells[J]. Sheet Metal Industries, 1951(28):453-458.
[8] ZHARKOV V A. Theory of the drawing of cylindrical parts from sheet materials[J]. J Mater Process Technol, 1992,(31):379-392.
[9] CHANG D F, WANG J E. Wall thickness distribution analysis of a drawn-redrawn can[J]. Transactions of the North American Manufacturing Research Institution of SME, 1996, 24:125-130.
[10] MAJLESSI S A, LEE D. Development of multistage sheet metal forming analysis method[J]. Journal of Materials Shaping Technology, 1988, 6(1):41-54.
[11] PAUNOIU V, RAMOS M G, MANGAS V L. Experimental and numerical analysis of multistage deep drawing[J]. The Annals of "Dun?rea de Jos" University of Galati:Fascicle V, 2012, 1:79-84.
[12] THUILLIER S, MANACH P Y, MENEZES L F, et al. Experimental and numerical study of reverse re-drawing of anisotropic sheet metals[J]. Journal of Materials Processing Technology, 2002, 125:764-771.
[13] ZHAO S D, ZHANG Z Y, ZHANG Y, et al. The study on forming principle in the process of hydro-mechanical reverse deep drawing with axial pushing force for cylindrical cups[J]. Journal of Materials Processing Technology, 2007, 187:300-303.
[14] WANG H, GAO L, CHEN M. Hydrodynamic deep drawing process assisted by radial pressure with inward flowing liquid[J]. International Journal of Mechanical Sciences, 2011, 53(9):793-799.
[15] GRAF A, HOSFORD W. The influence of strain-path changes on forming limit diagrams of A16111 T4[J]. International Journal of Mechanical Sciences, 1994, 36(10):897-910.
[16] STOUGHTON T B, ZHU X. Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD[J]. International Journal of Plasticity, 2004, 20(8):1463-1486.
[17] KURODA M, TVERGAARD V. Effect of strain path change on limits to ductility of anisotropic metal sheets[J]. International Journal of Mechanical Sciences, 2000, 42(5):867-887.
[1] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[2] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[3] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[4] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[5] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[6] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[7] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[8] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[9] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[10] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[11] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[12] 李卫, 陈康华, 焦慧彬, 周亮, 杨振, 陈送义. 微量Ge对7056铝合金组织和淬火敏感性的影响[J]. 材料工程, 2019, 47(3): 123-130.
[13] 周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
[14] 臧金鑫, 陈军洲, 伊琳娜, 汝继刚. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程, 2019, 47(12): 98-103.
[15] 郜庆伟, 赵健, 舒凤远, 吕成成, 齐宝亮, 于治水. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn