Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (8): 127-133    DOI: 10.11868/j.issn.1001-4381.2016.001430
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光选区熔化成形TC4合金腐蚀行为
杨慧慧, 杨晶晶, 喻寒琛, 王泽敏(), 曾晓雁
华中科技大学 武汉光电国家实验室, 武汉 430074
Corrosion Behaviour of Selective Laser Melted TC4 Alloy
Hui-hui YANG, Jing-jing YANG, Han-chen YU, Ze-min WANG(), Xiao-yan ZENG
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
全文: PDF(5054 KB)   HTML ( 27 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用激光选区熔化成形技术(Selective Laser Melting,SLM)制备TC4钛合金试样,观察其显微组织,并用电化学腐蚀实验测试不同成形面以及粗糙度对TC4钛合金耐蚀性能的影响,并与传统轧制态进行对比。结果表明:成形方式、成形面和粗糙度均影响TC4钛合金的耐蚀性能。激光选区熔化成形技术制备的TC4钛合金纵截面由原始柱状β晶粒和与生长方向成±45°针状α'马氏体组成,横截面上的晶粒呈棋盘状。传统轧制态由片状α+β相以及等轴α相组成。传统轧制态的耐腐蚀性要强于SLM成形的试样,且SLM成形的纵截面的耐腐蚀性要强于横截面。表面粗糙度小的试样耐腐蚀性要强于表面粗糙度大的试样。激光选区熔化成形态试样腐蚀表面都出现明显的腐蚀坑,腐蚀形态均为点蚀。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨慧慧
杨晶晶
喻寒琛
王泽敏
曾晓雁
关键词 增材制造钛合金耐蚀性能极化曲线    
Abstract

TC4 alloy samples were built by selective laser melting (SLM). The microstructure was observed, and electrochemical measurements were performed to investigate the corrosion resistance of SLMed TC4 alloy in different forming surface and roughness. The traditional rolled sample was introduced as a reference. Results show that processing method, forming surface and roughness act a significant role in influencing the corrosion resistance. The microstructure of SLMed TC4 on vertical section consists of the primitive columnar β grains filled with a large number of acicular α' martensites oriented at approximately ±45° with building direction. Unlike the typical α+β phase of traditional rolled sample, a chessboard pattern is observed on cross-section of SLMed TC4. The electrochemical results suggest that the corrosion resistance of traditional rolled sample is superior to that of SLMed sample. SLMed TC4 sample exhibits a better corrosion resistance on the vertical section, compared with the cross-section. Besides, the SLMed sample with rougher surface exhibits poorer corrosion resistance. Obvious etch pit is found on the surface of SLMed sample and the corrosion morphology is pitting.

Key wordsadditive manufacturing    titanium alloy    corrosion resistance    polarization curve
收稿日期: 2016-11-30      出版日期: 2018-08-17
中图分类号:  TQ150.1  
基金资助:国家重点基础研究发展计划(973计划)项目(613281);中央高校基本科研业务费资助项目(HUST:2016YXZD005)
通讯作者: 王泽敏     E-mail: zmwang@hust.edu.cn
作者简介: 王泽敏(1974-), 男, 博士, 教授, 研究方向:增材制造, 联系地址:湖北省武汉市洪山区1037号华中科技大学武汉光电国家实验室(430074), E-mail:zmwang@hust.edu.cn
引用本文:   
杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
Hui-hui YANG, Jing-jing YANG, Han-chen YU, Ze-min WANG, Xiao-yan ZENG. Corrosion Behaviour of Selective Laser Melted TC4 Alloy. Journal of Materials Engineering, 2018, 46(8): 127-133.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001430      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/127
Fig.1  实验中采用的TC4粉末的形貌(a)及粒径分布(b)
Al V C H O N Fe Ti
6.0-6.5 3.5-4.5 ≤0.03 ≤0.002 ≤0.1 ≤0.01 ≤0.20 Bal
Table 1  TC4金属粉末化学成分(质量分数/%)
Laser
power/W
Scanning
speed/
(mm·s-1)
Hatch
spacing/
mm
Layer
thickness/
mm
Hatch
angle/(°)
194 1000 0.07 0.02 90
Table 2  实验中所采用的SLM工艺参数
Fig.2  SLM成形TC4试样XOY(a)和XOZ(b)面的显微组织
Fig.3  轧制态TC4试样的显微组织
Fig.4  TC4合金X射线衍射图
Fig.5  SLM成形及轧制成形TC4合金的极化曲线
No Er/V Ir/(A·cm-2) Ep/V Ip/(A·cm-2) EB/V
XOY -0.48 7.67×10-6 0.02 4.18×10-3 3.68
XOZ -0.47 7.69×10-5 -0.11 9.28×10-4 6.22
Rolled -0.48 4.78×10-7 0.45 2.34×10-4 2.90
Table 3  SLM成形及轧制态试样的电化学参数
Fig.6  SLM成形及轧制态成形TC4合金的电化学阻抗谱
a)Nyquist图; (b)Bode图
Fig.7  SLM成形TC4合金XOY面(a)和XOZ面(b)腐蚀的表面形貌
Fig.8  SLM成形TC4合金(XOZ)原始形貌(a)及粗糙度(b)
Fig.9  SLM成形TC4合金(XOZ)抛光形貌(a)及粗糙度(b)
Fig.10  不同粗糙度下SLM成形TC4合金的极化曲线
Fig.11  SLM成形TC4合金原始XOZ面的腐蚀表面形貌
(a)低倍;(b)中高倍; (c)高倍
Fig.12  不同粗糙度下SLM成形TC4合金的电化学阻抗谱
(a)Nyquist图; (b)Bode图
1 蔡建明, 弭光宝, 高帆, 等. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44 (8): 1- 10.
doi: 10.11868/j.issn.1001-4381.2016.08.001
1 CAI J M , MI G B , GAO F , et al. Research and development of some advanced high temperature titanium alloys for aero-engine[J]. Journal of Materials Engineering, 2016, 44 (8): 1- 10.
doi: 10.11868/j.issn.1001-4381.2016.08.001
2 连峰, 臧路苹, 项秋宽, 等. 超疏水钛合金表面在人工海水中的摩擦性能[J]. 金属学报, 2016, 52 (5): 592- 598.
doi: 10.11900/0412.1961.2015.00342
2 LIAN F , ZANG L P , XIANG Q K , et al. Tribological performance of super hydro-phobic titanium alloy surface in artificial seawater[J]. Acta Metallurgica Sinica, 2016, 52 (5): 592- 598.
doi: 10.11900/0412.1961.2015.00342
3 李春燕, 寇生中, 赵燕春, 等. 钛合金表面激光熔覆钴基合金层的组织及力学性能[J]. 材料热处理学报, 2015, 36 (2): 171- 178.
3 LI C Y , KOU S Z , ZHAO Y C , et al. Microstructure and mechanical property of laser clad Co-based alloy coatings on titanium alloy[J]. Transactions of Materials and Heat Treatment, 2015, 36 (2): 171- 178.
4 PIAZZA S , BIUNDO G L , ROMANO M C , et al. In situ characterization of passive films on Al-Ti alloy by photocurrent and impedance spectroscopy[J]. Corrosion Science, 1998, 40 (7): 1087- 1108.
doi: 10.1016/S0010-938X(98)00009-2
5 祝力伟, 王新南, 朱知寿. 不同热处理工艺下TC4-DT钛合金的显微组织及力学性能[J]. 钛工业进展, 2012, 29 (1): 9- 12.
5 ZHU L W , WANG X N , ZHU Z S . Effect of heat treatment on microstructure and mechanical properties of TC4-DT alloy[J]. Titanium Industry Progress, 2012, 29 (1): 9- 12.
6 IBRIS N , ROSCA J C M . EIS study of Ti and its alloys in biological media[J]. Journal of Electroanalytical Chemistry, 2002, 526 (1/2): 53- 62.
7 HEAKAL E T , GHONEIM A A , MOGODA A S , et al. Electrochemical behaviour of Ti-6Al-4V alloy and Ti in azide and halide solutions[J]. Corrosion Science, 2011, 53 (9): 2728- 2737.
doi: 10.1016/j.corsci.2011.05.003
8 ZAVERI N , MAHAPATRA M , DECEUSTER A , et al. Corrosion resistance of pulsed laser-treated Ti-6Al-4V implant in simulated biofluids[J]. Electrochimica Acta, 2008, 53 (15): 5022- 5032.
doi: 10.1016/j.electacta.2008.01.086
9 RYAN G E , PANDIT A S , APATSIDIS D P . Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique[J]. Biomaterials, 2008, 29 (27): 3625- 3635.
doi: 10.1016/j.biomaterials.2008.05.032
10 BENEA L , MARDARE-DANAILA E , MARDARE M , et al. Preparation of titanium oxide and hydroxyapatite on Ti-6Al-4V alloy surface and electrochemical behaviour in bio-simulated fluid solution[J]. Corrosion Science, 2014, 80, 331- 338.
doi: 10.1016/j.corsci.2013.11.059
11 RAZAVI R S , SALEHI M , RAMAZANI M , et al. Corrosion behaviour of laser gas nitrided Ti-6Al-4V in HCl solution[J]. Corrosion Science, 2009, 51 (10): 2324- 2329.
doi: 10.1016/j.corsci.2009.06.016
12 POHRELYUK I M , FEDIRKO V M , TKACHUK O V , et al. Corrosion resistance of Ti-6Al-4V alloy with nitride coatings in Ringer's solution[J]. Corrosion Science, 2013, 66, 392- 398.
doi: 10.1016/j.corsci.2012.10.005
13 VASTOLA G , ZHANG G , PEI Q X , et al. Modeling the microstructure evolution during additive manufacturing of Ti6Al4V:a comparison between electron beam melting and selective laser melting[J]. JOM, 2016, 68 (5): 1370- 1375.
doi: 10.1007/s11837-016-1890-5
14 DANG K D , LI P F . The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting[J]. Virtual and Physical Prototyping, 2016, 11 (1): 41- 47.
doi: 10.1080/17452759.2016.1142215
15 DAI N W , ZHANG L C , ZHANG J X , et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution[J]. Corrosion Science, 2016, 102, 484- 489.
doi: 10.1016/j.corsci.2015.10.041
16 YANG J J , YU H C , YIN J , et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting[J]. Materials & Design, 2016, 108, 308- 318.
17 VILARO T , COLIN C , BAETOUT J D . As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting[J]. Metallurgical and Materials Transactions A, 2011, 42 (10): 3190- 3199.
doi: 10.1007/s11661-011-0731-y
18 EDWARDS P , RAMULU M . Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering:A, 2014, 598, 327- 337.
doi: 10.1016/j.msea.2014.01.041
19 WEI K W , WANG Z M , ZENG X Y . Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters, 2015, 156, 187- 190.
doi: 10.1016/j.matlet.2015.05.074
20 WANG Z M , GUAN K , GAO M , et al. The microstructure and mechanical properties of deposited-IN718 selective laser melting[J]. Journal of Alloys & Compounds, 2012, 513, 518- 523.
21 ATTAR H , BÖNISCH M , CALIN M , et al. Selective laser melting of in situ titanium-titanium boride composites:processing, microstructure and mechanical properties[J]. Acta Materialia, 2014, 76, 13- 22.
doi: 10.1016/j.actamat.2014.05.022
22 彭立涛, 王道明, 邓子涛, 等. 表面粗糙度对锌涂层防腐性能的影响[J]. 全面腐蚀控制, 2011, 25 (6): 29- 31.
22 PENG L T , WANG D M , DENG Z T , et al. Influence of the surface roughness on the anticorrosion performance of Zn coating[J]. Total Corrosion Control, 2011, 25 (6): 29- 31.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[3] 姚凯, 闵小华. 变形温度与应变速率耦合作用对TWIP效应Ti-15Mo合金力学性能的影响[J]. 材料工程, 2022, 50(8): 133-142.
[4] 牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江. 熔体自生陶瓷激光直接能量沉积增材制造研究进展[J]. 材料工程, 2022, 50(7): 1-17.
[5] 耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升. 增材制造智能材料研究现状及展望[J]. 材料工程, 2022, 50(6): 12-26.
[6] 王喆, 肖明颖, 高华兵, 董涛, 李海新, 杨振林, 果春焕, 姜风春. 钛合金/钢异种连接接头组织与性能研究进展[J]. 材料工程, 2022, 50(5): 11-19.
[7] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[8] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[9] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[10] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[11] 宋宇航, 杨翔宁, 张泰峰, 张勇, 樊伟杰, 管宇. 7B04铝合金-CFRP300在模拟海洋大气环境下的电偶腐蚀行为[J]. 材料工程, 2022, 50(11): 155-164.
[12] 信云鹏, 朱知寿, 王新南, 商国强, 王彦伟, 李明兵. 固溶冷却速率对全片层亚稳β钛合金α相形貌的影响[J]. 材料工程, 2022, 50(10): 80-86.
[13] 石磊, 李阳, 肖亦辰, 武传松, 刘会杰. 基于搅拌摩擦的金属固相增材制造研究进展[J]. 材料工程, 2022, 50(1): 1-14.
[14] 王庆娟, 吴金城, 王伟, 杜忠泽, 尹仁锟. 超高强β钛合金等温相转变特性及力学性能[J]. 材料工程, 2021, 49(9): 94-100.
[15] 刘剑桥, 刘佳, 唐毓金, 王立强. 钛合金在骨科植入领域的研究进展[J]. 材料工程, 2021, 49(8): 11-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn