Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (2): 62-67    DOI: 10.11868/j.issn.1001-4381.2017.000540
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
炭化纳米Co3O4/硅藻土复合材料制备及其性能
张博1,2, 付琪智1, 林森1,2, 陈廷芳1,*(), 孙仕勇1,2, 蒋卉1
1 西南科技大学 非金属矿研究所 固体废物处理与资源化教育部重点实验室, 四川 绵阳 621010
2 西南科技大学 四川省非金属矿粉体改性与高质化利用技术工程实验室, 四川 绵阳 621010
Preparation and properties of carbonized nano Co3O4 and diatomite composites
Bo ZHANG1,2, Qi-zhi FU1, Sen LIN1,2, Ting-fang CHEN1,*(), Shi-yong SUN1,2, Hui JIANG1
1 Key Laboratory of Solid Waste Treatment and Resource Recycle(Ministry of Education), Institute of Non-metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 Sichuan Provincial Engineering Laboratory of Non-metallic Mineral Powder Modification and High Efficiency Utilization, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
全文: PDF(2496 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用高温热解炭化制备炭化纳米Co3O4与硅藻土复合材料,研究其磁性和吸波性能。采用X射线衍射、扫描电镜、透射电镜、振动样品磁强计和矢量网络分析仪等测试分析技术对复合材料进行表征。结果表明:平均粒径为50nm的超顺磁性纳米Co3O4粒子和无定形碳均匀分散于硅藻土表面和孔隙内,形成稳定的复合体。炭化纳米Co3O4/硅藻土复合具有较强的超顺磁性和吸波性能,最大反射率损失为-14.7dB, < -10dB的频率范围大约为14~18GHz,带宽为4GHz。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张博
付琪智
林森
陈廷芳
孙仕勇
蒋卉
关键词 纳米Co3O4硅藻土复合材料吸波性能炭化    
Abstract

Carbonized nano-Co3O4 particles and diatomite were used for preparation of the composite of carbonized nano-Co3O4/diatomite by pyrolysis method, the magnetic and absorption properties were studied. The composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer. The results show that the superparamagnetic nano-Co3O4 particles with average size of 50nm and amorphous activated carbon are uniformly dispersed in the surface and pores of diatomite to form a stable composite. Carbonized nano-Co3O4/diatomite composite indicates high magnetic and microwave absorption performance with maximum reflection loss of -14.7dB, < -10dB frequency range about 14-18GHz and bandwidth of 4GHz.

Key wordsnano-Co3O4    diatomite    composite    microwave absorption property    carbonization
收稿日期: 2017-04-28      出版日期: 2019-02-21
中图分类号:  P579  
  TB34  
基金资助:国家自然科学基金项目(41672039);固体废物处理与资源化教育部重点实验室开放基金(09zxgk06)
通讯作者: 陈廷芳     E-mail: chentingfang@swust.edu.cn
作者简介: 陈廷芳(1963-), 男, 教授, 博士, 研究方向:非金属矿开发与应用, 联系地址:四川省绵阳市西南科技大学环境与资源学院(621010), E-mail:chentingfang@swust.edu.cn
引用本文:   
张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
Bo ZHANG, Qi-zhi FU, Sen LIN, Ting-fang CHEN, Shi-yong SUN, Hui JIANG. Preparation and properties of carbonized nano Co3O4 and diatomite composites. Journal of Materials Engineering, 2019, 47(2): 62-67.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000540      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/62
Fig.1  炭化纳米Co3O4及其硅藻土复合材料的微观形态特征
(a)炭化纳米Co3O4;(b)炭化纳米Co3O4/硅藻土复合材料;(1)SEM图;(2)EDS能谱图;(3)TEM图
Fig.2  炭化纳米Co3O4及其硅藻土复合材料的XRD谱图
Fig.3  炭化纳米Co3O4, 炭化纳米Co3O4/硅藻土复合材料的VSM磁滞回线图
Carbonized Co3O4:diatomite Ms/(A·g-1)
Co3O4 1191.3
1:2.3 499.9
1:2.7 202.9
1:3.3 187.1
Table 1  炭化纳米Co3O4及其硅藻土复合材料的饱和磁化强度
Fig.4  炭化纳米Co3O4及其硅藻土复合材料的电磁特征
(a)介电常数实部ε′; (b)介电常数虚部ε″;(c)电磁常数实部μ′;(d)电磁常数虚部μ″;(e)介电损耗角正切tanδE;(f)磁损耗角正切tanδM
Fig.5  炭化纳米Co3O4及其硅藻土复合材料的微波吸收性能
1 刘丹莉, 刘平安, 杨青松, 等. 吸波材料的研究现状及其发展趋势[J]. 材料导报, 2013, 27 (17): 74- 78.
doi: 10.3969/j.issn.1005-023X.2013.17.015
1 LIU D L , LIU P A , YANG Q S , et al. Study on current situation and development trend of microwave absorbing materials[J]. Materials Review, 2013, 27 (17): 74- 78.
doi: 10.3969/j.issn.1005-023X.2013.17.015
2 杨国栋, 康永, 孟前进. 微波吸波材料的研究进展[J]. 应用化工, 2010, 39 (4): 584- 589.
doi: 10.3969/j.issn.1671-3206.2010.04.033
2 YANG G D , KANG Y , MENG Q J . Study on microwave absorbing materials[J]. Chinese Journal of Applied Chemistry, 2010, 39 (4): 584- 589.
doi: 10.3969/j.issn.1671-3206.2010.04.033
3 GAO Y , CHEN S , CAO D , et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam[J]. Journal of Power Sources, 2010, 195 (6): 1757- 1760.
doi: 10.1016/j.jpowsour.2009.09.048
4 DENG M J , HUANG F L , SUN I W , et al. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity[J]. Nanotechnology, 2009, 20 (17): 175602.
doi: 10.1088/0957-4484/20/17/175602
5 ICHIYANAGI Y , KIMISHIMA Y , YAMADA S . Magnetic study on Co3O4, nanoparticles[J]. Journal of Magnetism & Magnetic Materials, 2004, 272 (2): 1245- 1246.
6 LIAO M , FENG J , LUO W , et al. Co3O4, nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5, photoanode[J]. Advanced Functional Materials, 2012, 22 (14): 3066- 3074.
doi: 10.1002/adfm.v22.14
7 SHI P , SU R , WAN F , et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals[J]. Applied Catalysis B Environmental, 2012, 123/124 (12): 265- 272.
8 NGUYEN H , ELASAFTY S A . Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors[J]. Journal of Physical Chemistry C, 2011, 115 (17): 8466- 8474.
doi: 10.1021/jp1116189
9 胡雷, 刘志宏. 四氧化三钴粉末的制备与应用现状[J]. 粉末冶金材料科学与工程, 2008, 13 (4): 195- 200.
doi: 10.3969/j.issn.1673-0224.2008.04.002
9 HU L , LIU Z H . Preparation and application of Co3O4[J]. Materials Science and Engineering of Powder Metallurgy, 2008, 13 (4): 195- 200.
doi: 10.3969/j.issn.1673-0224.2008.04.002
10 WANG G , WU Y , WEI Y , et al. Fabrication of reduced graphene oxide(RGO)/Co3O4 nanohybrid particles and a RGO/Co3O4/poly(vinylidene fluoride) composite with enhanced wave-absorption properties[J]. Chem Plus Chem, 2014, 79 (3): 375- 381.
11 LI X , YANG S , SUN J , et al. Enhanced electromagnetic wave absorption performances of Co3O4, nanocube/reduced graphene oxide composite[J]. Synthetic Metals, 2014, 194, 52- 58.
doi: 10.1016/j.synthmet.2014.04.012
12 WANG X , YU J , DONG H , et al. Synthesis of nanostructured MnO2, SnO2, and Co3O4:graphene composites with enhanced microwave absorption properties[J]. Applied Physics A, 2015, 119 (4): 1483- 1490.
doi: 10.1007/s00339-015-9124-1
13 朱学文, 廖列文, 崔英德. 均匀沉淀法制备纳米四氧化三钴微粉[J]. 无机盐工业, 2002, 34 (1): 3- 4.
doi: 10.3969/j.issn.1006-4990.2002.01.001
13 ZHU X W , LIAO L W , CUI Y D . Study on preparing nanometer-sized Co3O4 by homogeneous precipitation method[J]. Inorganic Chemicals Industry, 2002, 34 (1): 3- 4.
doi: 10.3969/j.issn.1006-4990.2002.01.001
14 LIU X , QIU G , LI X . Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes[J]. Nanotechnology, 2005, 16 (12): 3035- 3040.
doi: 10.1088/0957-4484/16/12/051
15 刘志宏, 胡雷, 刘智勇, 等. 高温气-固反应水解制备八面体形四氧化三钴粉末[J]. 无机材料学报, 2008, 23 (6): 1205- 1210.
doi: 10.3321/j.issn:1000-324X.2008.06.024
15 LIU Z H , HU L , LIU Z Y , et al. Synthesis of microsized Co3O4 octahedral by high temperature gas-solid hydrolysis[J]. Journal of Inorganic Materials, 2008, 23 (6): 1205- 1210.
doi: 10.3321/j.issn:1000-324X.2008.06.024
16 姜玉芝, 贾嵩阳. 硅藻土的国内外开发应用现状及进展[J]. 有色矿冶, 2011, 27 (5): 31- 37.
doi: 10.3969/j.issn.1007-967X.2011.05.012
16 JIANG Y Z , JIA S Y . Application and progress of development and application of diatomaceous earth at home and abroad[J]. Non-ferrous Mining and Metallurgy, 2011, 27 (5): 31- 37.
doi: 10.3969/j.issn.1007-967X.2011.05.012
17 孙仕勇, 付琪智, 宋绵新, 等. 硅藻土-无定形碳-氧化铁三元复合体系降解三硝基甲苯的研究[J]. 岩石矿物学杂志, 2015, 34 (6): 901- 906.
doi: 10.3969/j.issn.1000-6524.2015.06.015
17 SUN S Y , FU Q Z , SONG M X , et al. The removal of TNT by ternary composite materials of diatomite-amorphous carbon-iron[J]. Acta Petrologica et Mineralogica, 2015, 34 (6): 901- 906.
doi: 10.3969/j.issn.1000-6524.2015.06.015
18 孙仕勇, 文科, 杨波, 等. 活性炭/硅藻土吸附剂的制备及性能研究[J]. 岩石矿物学杂志, 2013, 32 (6): 941- 946.
doi: 10.3969/j.issn.1000-6524.2013.06.027
18 SUN S Y , WEN K , YANG B , et al. The preparation and adsorption properties of novel active carbon/diatomite[J]. Acta Petrologica et Mineralogica, 2013, 32 (6): 941- 946.
doi: 10.3969/j.issn.1000-6524.2013.06.027
19 崔素萍, 王楠, 郭红霞, 等. 硅藻土/镍锌铁氧体的制备及电磁性能[J]. 硅酸盐学报, 2016, 44 (10): 1509- 1514.
19 CUI S P , WANG N , GUO H X , et al. Synthesis and electromagnetic properties of nickel zinc ferrite coated on surface of diatomite[J]. Journal of the Chinese Ceramic Society, 2016, 44 (10): 1509- 1514.
20 CAO M S , SONG W L , HOU Z L , et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48 (3): 788- 796.
21 LIU J , CAO M S , LUO Q , et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature[J]. ACS Applied Materials & Interfaces, 2016, 34, 22615.
22 WEN B , CAO M S , HOU Z L , et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65 (12): 124- 139.
23 SONG W L , CAO M S , HOU Z L , et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band[J]. Applied Physics Letters, 2009, 94 (23): 233110- 233112.
doi: 10.1063/1.3152764
24 CAO M S , YANG J , SONG W L , et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied Materials & Interfaces, 2012, 4 (12): 6949- 6956.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn