Preparation and properties of carbonized nano Co3O4 and diatomite composites
Bo ZHANG1,2, Qi-zhi FU1, Sen LIN1,2, Ting-fang CHEN1,*(), Shi-yong SUN1,2, Hui JIANG1
1 Key Laboratory of Solid Waste Treatment and Resource Recycle(Ministry of Education), Institute of Non-metallic Minerals, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 2 Sichuan Provincial Engineering Laboratory of Non-metallic Mineral Powder Modification and High Efficiency Utilization, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
Carbonized nano-Co3O4 particles and diatomite were used for preparation of the composite of carbonized nano-Co3O4/diatomite by pyrolysis method, the magnetic and absorption properties were studied. The composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer. The results show that the superparamagnetic nano-Co3O4 particles with average size of 50nm and amorphous activated carbon are uniformly dispersed in the surface and pores of diatomite to form a stable composite. Carbonized nano-Co3O4/diatomite composite indicates high magnetic and microwave absorption performance with maximum reflection loss of -14.7dB, < -10dB frequency range about 14-18GHz and bandwidth of 4GHz.
LIU D L , LIU P A , YANG Q S , et al. Study on current situation and development trend of microwave absorbing materials[J]. Materials Review, 2013, 27 (17): 74- 78.
doi: 10.3969/j.issn.1005-023X.2013.17.015
YANG G D , KANG Y , MENG Q J . Study on microwave absorbing materials[J]. Chinese Journal of Applied Chemistry, 2010, 39 (4): 584- 589.
doi: 10.3969/j.issn.1671-3206.2010.04.033
3
GAO Y , CHEN S , CAO D , et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam[J]. Journal of Power Sources, 2010, 195 (6): 1757- 1760.
doi: 10.1016/j.jpowsour.2009.09.048
4
DENG M J , HUANG F L , SUN I W , et al. An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity[J]. Nanotechnology, 2009, 20 (17): 175602.
doi: 10.1088/0957-4484/20/17/175602
5
ICHIYANAGI Y , KIMISHIMA Y , YAMADA S . Magnetic study on Co3O4, nanoparticles[J]. Journal of Magnetism & Magnetic Materials, 2004, 272 (2): 1245- 1246.
6
LIAO M , FENG J , LUO W , et al. Co3O4, nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5, photoanode[J]. Advanced Functional Materials, 2012, 22 (14): 3066- 3074.
doi: 10.1002/adfm.v22.14
7
SHI P , SU R , WAN F , et al. Co3O4 nanocrystals on graphene oxide as a synergistic catalyst for degradation of Orange Ⅱ in water by advanced oxidation technology based on sulfate radicals[J]. Applied Catalysis B Environmental, 2012, 123/124 (12): 265- 272.
8
NGUYEN H , ELASAFTY S A . Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors[J]. Journal of Physical Chemistry C, 2011, 115 (17): 8466- 8474.
doi: 10.1021/jp1116189
HU L , LIU Z H . Preparation and application of Co3O4[J]. Materials Science and Engineering of Powder Metallurgy, 2008, 13 (4): 195- 200.
doi: 10.3969/j.issn.1673-0224.2008.04.002
10
WANG G , WU Y , WEI Y , et al. Fabrication of reduced graphene oxide(RGO)/Co3O4 nanohybrid particles and a RGO/Co3O4/poly(vinylidene fluoride) composite with enhanced wave-absorption properties[J]. Chem Plus Chem, 2014, 79 (3): 375- 381.
11
LI X , YANG S , SUN J , et al. Enhanced electromagnetic wave absorption performances of Co3O4, nanocube/reduced graphene oxide composite[J]. Synthetic Metals, 2014, 194, 52- 58.
doi: 10.1016/j.synthmet.2014.04.012
12
WANG X , YU J , DONG H , et al. Synthesis of nanostructured MnO2, SnO2, and Co3O4:graphene composites with enhanced microwave absorption properties[J]. Applied Physics A, 2015, 119 (4): 1483- 1490.
doi: 10.1007/s00339-015-9124-1
ZHU X W , LIAO L W , CUI Y D . Study on preparing nanometer-sized Co3O4 by homogeneous precipitation method[J]. Inorganic Chemicals Industry, 2002, 34 (1): 3- 4.
doi: 10.3969/j.issn.1006-4990.2002.01.001
14
LIU X , QIU G , LI X . Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes[J]. Nanotechnology, 2005, 16 (12): 3035- 3040.
doi: 10.1088/0957-4484/16/12/051
LIU Z H , HU L , LIU Z Y , et al. Synthesis of microsized Co3O4 octahedral by high temperature gas-solid hydrolysis[J]. Journal of Inorganic Materials, 2008, 23 (6): 1205- 1210.
doi: 10.3321/j.issn:1000-324X.2008.06.024
JIANG Y Z , JIA S Y . Application and progress of development and application of diatomaceous earth at home and abroad[J]. Non-ferrous Mining and Metallurgy, 2011, 27 (5): 31- 37.
doi: 10.3969/j.issn.1007-967X.2011.05.012
SUN S Y , FU Q Z , SONG M X , et al. The removal of TNT by ternary composite materials of diatomite-amorphous carbon-iron[J]. Acta Petrologica et Mineralogica, 2015, 34 (6): 901- 906.
doi: 10.3969/j.issn.1000-6524.2015.06.015
SUN S Y , WEN K , YANG B , et al. The preparation and adsorption properties of novel active carbon/diatomite[J]. Acta Petrologica et Mineralogica, 2013, 32 (6): 941- 946.
doi: 10.3969/j.issn.1000-6524.2013.06.027
CUI S P , WANG N , GUO H X , et al. Synthesis and electromagnetic properties of nickel zinc ferrite coated on surface of diatomite[J]. Journal of the Chinese Ceramic Society, 2016, 44 (10): 1509- 1514.
20
CAO M S , SONG W L , HOU Z L , et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon, 2010, 48 (3): 788- 796.
21
LIU J , CAO M S , LUO Q , et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature[J]. ACS Applied Materials & Interfaces, 2016, 34, 22615.
22
WEN B , CAO M S , HOU Z L , et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon, 2013, 65 (12): 124- 139.
23
SONG W L , CAO M S , HOU Z L , et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band[J]. Applied Physics Letters, 2009, 94 (23): 233110- 233112.
doi: 10.1063/1.3152764
24
CAO M S , YANG J , SONG W L , et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Applied Materials & Interfaces, 2012, 4 (12): 6949- 6956.