Please wait a minute...
 
2222材料工程  2021, Vol. 49 Issue (5): 144-150    DOI: 10.11868/j.issn.1001-4381.2020.001169
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
SiC/SiC复合材料在高温空气中的氧化行为
洪智亮1,*(), 张巧君2,3, 李开元1, 郭洪宝1, 张程煜3, 刘永胜3
1 中国航发商用航空发动机有限责任公司, 上海 200241
2 西安航空制动科技有限公司, 陕西 兴平 713106
3 西北工业大学 超高温复合材料重点实验室, 西安 710072
Oxidation behavior of SiC/SiC composites in air at high temperature
Zhi-liang HONG1,*(), Qiao-jun ZHANG2,3, Kai-yuan LI1, Hong-bao GUO1, Cheng-yu ZHANG3, Yong-sheng LIU3
1 AECC Commercial Aircraft Engine Co., Ltd., Shanghai 200241, China
2 Xi'an Aviation Brake Technology Co., Ltd., Xingping 713106, Shaanxi, China
3 Science and Technology on Thermosturctural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(14706 KB)   HTML ( 0 )  
输出: BibTeX | EndNote (RIS)      
摘要 

连续碳化硅纤维增强碳化硅复合材料(SiC/SiC)是先进航空发动机热端部件的重要候选材料。在高温燃气环境中,SiC/SiC会发生氧化腐蚀,导致材料性能迅速恶化。为了揭示国产SiC/SiC复合材料在高温燃气环境中的氧化腐蚀行为,本工作测试了SiC/SiC复合材料的1100~1300℃空气氧化性能,获得了材料的氧化动力学曲线,利用SEM,XPS和XRD分析了材料的形貌、成分和物相演变规律,以阐明其氧化行为。结果表明:SiC/SiC复合材料在1100~1300℃的氧化动力学均遵循抛物线规律;其氧化物为SiO2。SiC/SiC在1100℃时仅发生轻微氧化,温度高于1200℃时复合材料的氧化程度随温度升高而加剧。在BN界面相和基体孔隙附近的氧化现象更为明显。SiC/SiC复合材料的弯曲强度随氧化程度增加而降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪智亮
张巧君
李开元
郭洪宝
张程煜
刘永胜
关键词 SiC/SiC复合材料氧化行为氧化机理损伤    
Abstract

As one of important candidates for advanced aerocraft engine hot components, SiC/SiC composites would undergo oxidative and corrosive damage when subjected to high temperature combustion environment. Oxidation behavior of SiC/SiC composites at 1100-1300 ℃ in air was investigated in the present work, to clarify the oxidative and corrosive behavior of the composites. The oxidation kinetics curves were obtained. The morphology and composition evolution of the oxidized materials were analyzed by SEM, XPS and XRD. The results show that the oxidation kinetics of SiC/SiC composites at 1100-1300 ℃ follow the parabolic law and the oxides on the surface mainly consist of silica. Slight oxidation occurs at 1100 ℃. The oxidation rate increases with increasing temperature. The oxidation process is mainly concentrated in the BN interface phase and the pores of the matrix. The bending strength of the composite decreases with the oxidation extent.

Key wordsSiC/SiC composite    oxidation behavior    oxidation mechanism    damage
收稿日期: 2020-12-18      出版日期: 2021-05-21
中图分类号:  TB332  
基金资助:上海市科学技术委员会科研计划项目(15DZ1161100);上海市科学技术委员会科研计划项目(15DZ1161100);国防基础科研计划(JCKYS2019607003);国家重点研发计划(2016YFB1102502)
通讯作者: 洪智亮     E-mail: zhiliang_hong@163.com
作者简介: 洪智亮(1984-), 男, 高级工程师, 博士, 研究方向: 陶瓷基复合材料, 联系地址: 上海市闵行区莲花南路3998号(200241), zhiliang_hong@163.com
引用本文:   
洪智亮, 张巧君, 李开元, 郭洪宝, 张程煜, 刘永胜. SiC/SiC复合材料在高温空气中的氧化行为[J]. 材料工程, 2021, 49(5): 144-150.
Zhi-liang HONG, Qiao-jun ZHANG, Kai-yuan LI, Hong-bao GUO, Cheng-yu ZHANG, Yong-sheng LIU. Oxidation behavior of SiC/SiC composites in air at high temperature. Journal of Materials Engineering, 2021, 49(5): 144-150.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.001169      或      http://jme.biam.ac.cn/CN/Y2021/V49/I5/144
Fig.1  SiC/SiC在不同温度的单位面积质量变化曲线
T/℃ k/(mg2·mm-4·h-1) Reference
1100 (1.20±0.67)×10-6 Present work
1200 (3.16±0.93)×10-6 Present work
1300 (2.33±0.51)×10-5 Present work
1200 (2.35±0.90)×10-8 [11]
1204 1.86×10-7 [10]
Table 1  SiC/SiC复合材料在不同温度的氧化速率常数
Fiber type Interface phase Density/(mg·cm-3) Porosity/% Sample size/mm
Domestic SiC BN 2.47 15.76 70 mm×9 mm×3.5 mm
Nicalon[10] PyC 2.30 8-12 23 mm×13 mm×2.5 mm
[11] BN 10 mm×10 mm×4 mm
Table 2  CVI-SiC/SiC复合材料性能比较
Fig.2  SiC/SiC复合材料在不同温度氧化300 h后的XRD图谱
Fig.3  SiC/SiC复合材料在不同温度氧化300 h后的XPS谱
(a)Si2p;(b)O1s
Bonding form Atom fraction/%
1100 ℃ 1200 ℃ 1300 ℃
Si—C 29.92
Si—O(SiO2) 57.68 42.45 65.06
Si—O(SiC) 12.40 57.55 34.94
Table 3  SiC/SiC氧化300 h XPS中Si2p峰各键合状态及含量
Bonding form Atom fraction/%
1100 ℃ 1200 ℃ 1300 ℃
Si—O(SiO2) 35.68 63.40 64.26
Si—O(SiC) 54.83 32.47 35.74
B—O 9.49 4.13
Table 4  SiC/SiC复合材料氧化300 h XPS分析O1s峰各键合状态及含量
Fig.4  SiC/SiC复合材料在不同温度下氧化300 h后的表面形貌和EDS图谱
(a)1100 ℃;(b)1200 ℃;(c)1300 ℃
Fig.5  SiC/SiC复合材料氧化300 h的截面SEM图(1)和EDS分析(2)
(a)1100 ℃;(b)1200 ℃;(c)1300 ℃
T/℃ Oxide layer/μm
1100 88.71±9.07
1200 111.62±13.51
1300 164.33±19.45
Table 5  SiC/SiC不同温度下氧化300 h的氧化层厚度
Fig.6  SiC/SiC 1200 ℃氧化不同时间的SEM图(1)及EDS分析(2)
(a)200 h;(b)300 h
Fig.7  SiC/SiC复合材料不同温度氧化300 h后的弯曲强度保持率
Fig.8  SiC/SiC复合材料氧化后的弯曲断口形貌
(a)1100 ℃;(b)1200 ℃;(c),(d)1300 ℃
1 胡海峰, 张玉娣, 邹世钦, 等. SiC/SiC复合材料及其在航空发动机上的应用[J]. 航空制造技术, 2010, (6): 90- 91.
doi: 10.3969/j.issn.1671-833X.2010.06.021
1 HU H F , ZHANG Y D , ZOU S Q , et al. SiC/SiC composites and its application on aero-engine[J]. Aeronautical Manufacturing Technology, 2010, (6): 90- 91.
doi: 10.3969/j.issn.1671-833X.2010.06.021
2 FENICI P , REBELO A J F , JONES R H , et al. Current status of SiC/SiC composites R&D[J]. Journal of Nuclear Materials, 1998, 258/263, 215- 225.
doi: 10.1016/S0022-3115(98)00303-1
3 赵爽, 杨自春, 周新贵. 不同界面SiC/SiC复合材料的断裂行为研究[J]. 无机材料学报, 2016, 31 (1): 58- 62.
3 ZHAO S , YANG Z C , ZHOU X G . Fracture behavior of SiC/SiC composites with different interfaces[J]. Journal of Inorganic Materials, 2016, 31 (1): 58- 62.
4 袁钦, 宋永才. 连续SiC纤维和SiCf/SiC复合材料的研究进展[J]. 无机材料学报, 2016, 31 (11): 1157- 1165.
4 YUAN Q , SONG Y C . Research and development of continuous SiC fibers and SiCf/SiC composites[J]. Journal of Inorganic Materials, 2016, 31 (11): 1157- 1165.
5 李崇俊. SiC/SiC复合材料及其应用[J]. 高科技纤维与应用, 2013, 38 (3): 1- 7.
doi: 10.3969/j.issn.1007-9815.2013.03.001
5 LI C J . SiC/SiC composites and application[J]. Hi-Tech Fiber & Application, 2013, 38 (3): 1- 7.
doi: 10.3969/j.issn.1007-9815.2013.03.001
6 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47 (2): 1- 10.
doi: 10.3969/j.issn.1673-1433.2019.02.001
6 LIU Q M , HUANG S Z , HE A J . Application requirements and challenges of CMC-SiC composites on aero-engine[J]. Journal of Materials Engineering, 2019, 47 (2): 1- 10.
doi: 10.3969/j.issn.1673-1433.2019.02.001
7 CHENG L F , XU Y D , ZHANG L T , et al. Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites[J]. Carbon, 2002, 40 (12): 2229- 2234.
doi: 10.1016/S0008-6223(02)00103-3
8 XU Y D , ZHANG L T , CHENG L F , et al. Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration[J]. Carbon, 1998, 36 (7): 1051- 1056.
9 YIN X W , CHENG L F , ZHANG L T , et al. Microstructure and oxidation resistance of carbon/silicon carbide composites infiltrated with chromium silicide[J]. Materials Science & Engineering: A, 2000, 290 (1/2): 89- 94.
10 FOX D S , NGUYEN Q N . Oxidation kinetics of enhanced SiC/SiC[J]. Ceramic Engineering and Science Proceedings, 2008, 16 (5): 877- 884.
11 NASIRI N A , PATRA N , NI N , et al. Oxidation behaviour of SiC/SiC ceramic matrix composites in air[J]. Journal of the European Ceramic Society, 2016, 36 (14): 3293- 3302.
doi: 10.1016/j.jeurceramsoc.2016.05.051
12 PULTZ W , HERTL W . SiO2+SiC reaction at elevated temperatures[J]. Transactions of the Faraday Society, 1966, 62 (9): 2499- 2504.
13 HIMPSEL F J , MCFEELY F R , TALEBIBRAHIMI A , et al. Microscopic structure of the SiO2/Si interface[J]. Physical Review B, 1988, 38 (9): 6084- 6096.
doi: 10.1103/PhysRevB.38.6084
14 赵良仲, 刘芬, 李建章, 等. 三维编织C/SiC纤维复合块材的XPS研究[J]. 物理化学学报, 2001, 17 (9): 802- 805.
doi: 10.3866/PKU.WHXB20010908
14 ZHAO L Z , LIU F , LI J Z , et al. XPS study of three dimensional C/SiC composites[J]. Acta Physico-Chimica Sinica, 2001, 17 (9): 802- 805.
doi: 10.3866/PKU.WHXB20010908
15 ERVIN G . Oxidation behavior of silicon carbide[J]. Journal of the American Ceramic Society, 1958, 41 (9): 347- 352.
doi: 10.1111/j.1151-2916.1958.tb12932.x
16 OPILA E J , JACOBSON N S . Corrosion of ceramic materials[J]. Materials Science and Technology, 1999, 329- 384.
17 OPILA E J , BOYD M K . Oxidation of SiC fiber-reinforced SiC matrix composites with a BN interphase[J]. Materials Science Forum, 2011, 696, 342- 347.
doi: 10.4028/www.scientific.net/MSF.696.342
18 JACOBSON N S , MORSCHER G N , BRYANT D R , et al. High-temperature oxidation of boron nitride: Ⅱ, boron nitride layers in composites[J]. Journal of the American Ceramic Society, 2010, 82 (6): 1473- 1482.
19 SHELDON B W , SUN E Y , NUTT S R , et al. Oxidation of BN-coated SiC fibers in ceramic matrix composites[J]. Journal of the American Ceramic Society, 1996, 79 (2): 539- 543.
doi: 10.1111/j.1151-2916.1996.tb08163.x
20 LINUS U J T , OGBUJI . A pervasive mode of oxidative degradation in a SiC-SiC composite[J]. Journal of the American Ceramic Society, 1998, 81 (11): 2777- 2784.
21 WU S J , CHENG L F , ZHANG L T . Oxidation behavior of 3D Hi-nicalon/SiC composite exposed in wet and simulated air environments[J]. Corrosion Science, 2013, 66, 111- 117.
doi: 10.1016/j.corsci.2012.09.008
22 WANG X , SONG Z L , CHENG Z L , et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society, 2020, 40 (14): 4872- 4878.
doi: 10.1016/j.jeurceramsoc.2020.01.033
[1] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[2] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[3] 孟亦圆, 林莉, 陈军, 金士杰, 罗忠兵. 基于临界折射纵波递归定量分析的纯铁疲劳损伤无损评价[J]. 材料工程, 2022, 50(10): 172-178.
[4] 张祥林, 孟庆春, 许名瑞, 曾本银, 程小全, 孙炜. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177.
[5] 郭洪宝, 洪智亮, 李开元, 梅文斌. 2D-C/SiC复合材料轴向加载泊松效应[J]. 材料工程, 2021, 49(8): 178-183.
[6] 柏跃磊, 尹航, 宋广平, 赫晓东, 齐欣欣, 高进, 郝兵兵, 张金泽. 高韧性三元层状陶瓷: 从MAX相到MAB相[J]. 材料工程, 2021, 49(5): 1-23.
[7] 王鑫, 万义兴, 张平, 单彩霞, 谢莹莹, 梁秀兵. 难熔高熵合金NbMoTaWTi/Zr的高温氧化行为[J]. 材料工程, 2021, 49(12): 100-106.
[8] 安子乾, 舒茂盛, 程羽佳, 郭鑫, 程小全. 3钉带衬套复合材料/金属接头拉伸疲劳性能[J]. 材料工程, 2021, 49(12): 164-174.
[9] 宋富阳, 张剑, 郭会明, 张迈, 赵云松, 沙江波. 热等静压技术在镍基铸造高温合金领域的应用研究[J]. 材料工程, 2021, 49(1): 65-74.
[10] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
[11] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[12] 张菁丽, 吴金平, 罗媛媛, 赵彬, 郭荻子, 赵圣泽, 杨帆. 基于Normalized Cockcroft&Latham韧性损伤准则Ti600合金临界损伤值的测定[J]. 材料工程, 2019, 47(7): 121-125.
[13] 郭洪宝, 谢骏. 2D-SiC/SiC复合材料损伤耦合力学行为[J]. 材料工程, 2019, 47(10): 160-165.
[14] 王刚, 贾普荣, 黄涛, 张龙. 含切口复合材料层合板拉伸应变集中与失效分析[J]. 材料工程, 2018, 46(2): 134-141.
[15] 王波, 吴亚波, 郭洪宝, 贾普荣, 李俊. 2D-C/SiC复合材料偏轴拉伸力学行为研究[J]. 材料工程, 2017, 45(7): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn