Please wait a minute...
 
2222材料工程  2023, Vol. 51 Issue (1): 140-147    DOI: 10.11868/j.issn.1001-4381.2022.000450
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能
王宪1, 贺雍律1,*(), 唐俊1, 刘钧1,*(), 黄贤俊2, 翟多才2, 张鉴炜1,*()
1 国防科技大学 空天科学学院, 长沙 410073
2 国防科技大学 电子科学学院, 长沙 410073
Mechanical and electromagnetic shielding properties of Al particle sandwich CFRP composites
Xian WANG1, Yonglyu HE1,*(), Jun TANG1, Jun LIU1,*(), Xianjun HUANG2, Duocai ZHAI2, Jianwei ZHANG1,*()
1 College of Space Science, National University of Defense Technology, Changsha 410073, China
2 College of Electronic Science, National University of Defense Technology, Changsha 410073, China
全文: PDF(15814 KB)   HTML ( 2 )  
输出: BibTeX | EndNote (RIS)      
摘要 

CFRP复合材料具有优异的力学性能,在航空航天装备中有广泛应用,但是因其单层铺层内部的结构各向异性,单向纤维铺层对于垂直极化波的电磁屏蔽效能较弱。为应对日益复杂的电磁环境,保护电子元器件不受干扰,增强复合材料的电磁屏蔽效能显得尤为重要,本工作利用非连续Al颗粒在层间面内紧密排列,构建了一种层间面内含连续Al屏蔽层的CFRP复合材料,并研究了不同Al颗粒含量对复合材料电磁屏蔽效能和力学性能的影响规律。结果表明,随着Al颗粒含量的增加,CFRP复合材料的导电性和电磁屏蔽效能也随之增加,当聚合物中Al颗粒质量分数达到33.3%时,复合材料的面内电导率提高了3个数量级,在垂直于纤维方向上对频率为3~17 GHz的电磁波的电磁屏蔽效能提高了10 dB以上。随着Al颗粒含量的增加,复合材料层间剪切强度与弯曲强度出现先上升后下降的变化规律,当树脂中Al质量分数为33.3%时,复合材料的层间剪切性能提高了5.2%达到80.5 MPa,当树脂中Al质量分数为50%时,复合材料的弯曲强度提高了20%至1441.0 MPa,弯曲模量提高了10.2%达到101.83 GPa。由此可见,Al颗粒夹层CFRP复合材料可以实现力学性能和电磁屏蔽效能的同步提升,是一种具有广泛应用前景的结构-电磁屏蔽一体化复合材料。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宪
贺雍律
唐俊
刘钧
黄贤俊
翟多才
张鉴炜
关键词 碳纤维增强树脂基复合材料层间剪切强度弯曲强度电磁屏蔽效能    
Abstract

CFRP composites are widely used in aerospace due to their excellent mechanical properties, however, due to the anisotropy of the individual plies, the electro magnetic interference(EMI) shielding efficiency(SE) for vertically polarized waves of the unidirectional fiber laminates is poor. In order to protect electronics within these equipments from increasingly severe electromagnetic interference, it is particularly important to enhance the electromagnetic shielding efficiency of the CFRP. In this paper, Al particles were introduced and a conductive network was constructed in the CFRP interlaminar region by condensing the Al particles on the prepreg surface. The effects of different Al particle contents on EMI SE and mechanical properties of composites were studied. With the increase of Al particle contents, the electrical conductivity and the EMI SE of CFRP composites increase. When the Al mass fraction in the resin is 33.3%, the in-plane conductivity of the composites increases by 3 orders of magnitude, the EMI SE of the Al particle sandwich CFRP composites is improved by more than 10 dB in the frequency range of 3-17 GHz. With the increase of Al particle contents, the interlaminar shear strength and bending strength of the composites increase first and then decrease. When the Al mass fraction in the resin is 33.3%, the interlaminar shear strength (ILSS) of the composites increases by 5.2% to 80.5 MPa, and when the Al mass fraction in the resin is 50%, the bending strength of the composites increases by 20% to 1441.0 MPa and the bending modulus increases by 10.2% to 101.83 GPa. It can be seen that the mechanical properties and electromagnetic shielding effectiveness of the Al particles sandwich CFRP composite can be improved simutaneously. It is a kind of structure electromagnetic shielding integrated composite with broad application prospects.

Key wordsCFRP    ILSS    bending strength    EMI SE
收稿日期: 2022-05-23      出版日期: 2023-01-16
中图分类号:  TB333  
基金资助:国家自然科学基金项目(52003295);湖南省自然科学基金青年基金项目(2022JJ40548)
通讯作者: 贺雍律,刘钧,张鉴炜     E-mail: yonglyu.he@foxmail.com;liujun502@nudt.edu.cn;jianwei_zhang@nudt.edu.cn
作者简介: 张鉴炜(1985-), 男, 副教授, 博士, 主要研究方向为纳米复合材料、新型能源材料, 联系地址: 湖南省长沙市开福区德雅路109号国防科技大学空天科学学院(410073), E-mail: jianwei_zhang@nudt.edu.cn
刘钧(1974-), 男, 教授, 博士, 主要研究方向为聚合物基复合材料, 联系地址: 湖南省长沙市开福区德雅路109号国防科技大学空天科学学院(410073), E-mail: liujun502@nudt.edu.cn
贺雍律(1991-), 男, 讲师, 博士, 主要研究方向为聚合物基复合材料结构功能一体化以及多尺度复合材料设计与仿真, 联系地址: 湖南省长沙市开福区德雅路109号国防科技大学空天科学学院(410073), E-mail: yonglyu.he@foxmail.com
引用本文:   
王宪, 贺雍律, 唐俊, 刘钧, 黄贤俊, 翟多才, 张鉴炜. Al颗粒夹层CFRP复合材料力学及电磁屏蔽性能[J]. 材料工程, 2023, 51(1): 140-147.
Xian WANG, Yonglyu HE, Jun TANG, Jun LIU, Xianjun HUANG, Duocai ZHAI, Jianwei ZHANG. Mechanical and electromagnetic shielding properties of Al particle sandwich CFRP composites. Journal of Materials Engineering, 2023, 51(1): 140-147.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2022.000450      或      http://jme.biam.ac.cn/CN/Y2023/V51/I1/140
Fig.1  Al颗粒夹层复合材料示意图
Sample Transverse
conductivity/
(S·cm-1)
Axial conductivity/
(S·cm-1)
Density/
(g·cm-3)
Baseline 0.115±0.0035 62.7±2.4 1.508±0.008
Al-33.3% 251±5.5 256±4.8 1.619±0.002
Al-50.0% 382±9.4 420±6.8 1.657±0.004
Al-60.0% 566±7.7 1180±25.3 1.673±0.005
Table 1  复合材料层间电导率
Fig.2  不同Al颗粒含量复合材料表面的SEM(1)及EDS(2)图
(a)33.3%;(b)50%;(c)60%
Fig.3  电磁屏蔽实验装置和电磁屏蔽效能
(a)实验室装置;(b)电场与纤维垂直时的电磁屏蔽效能;(c)电场与纤维平行时的电磁屏蔽效能
Fig.4  复合材料试样的层间剪切性能
(a)层间剪切强度; (b)短梁剪切试样的应力-应变曲线
Fig.5  不同Al颗粒含量复合材料的微观形貌表征
(a)侧截面SEM图;(b)横截面金相图;(c)侧截面EDS对比图
Fig.6  复合材料试样的弯曲力学性能(a)弯曲强度和弯曲模量;(b)弯曲实验的应力-应变曲线
1 QIN F , BROSSEAU C . A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics, 2012, 111 (6): 061301.
doi: 10.1063/1.3688435
2 GARDINERG . Lightning strike protection for composites structures[J]. High Performance Composites, 2006, 14 (5): 44- 50.
3 司卿, 黄正宇, 周颖慧, 等. CFRP材料电磁屏蔽效能研究[J]. EMC材料应用, 2015, (5): 46- 49.
3 SI Q , HUANG Z Y , ZHOU Y H , et al. Research on electromagnetic shielding effectiveness for CFRP[J]. Material Application in EMC, 2015, (5): 46- 49.
4 SOLYAEU Y , BABAYTSEV A . Direct observation of plastic shear strain concentration in the thick GLARE laminates under bending loading[J]. Composites: Part B, 2021, 224, 109145.
doi: 10.1016/j.compositesb.2021.109145
5 崔永静, 郝晶莹, 王长亮, 等. 树脂基复合材料表面爆炸喷涂铝涂层性能研究[J]. 材料工程, 2018, 46 (6): 120- 124.
5 CUI Y J , HAO J Y , WANG C L , et al. Characteristics of Al coatings fabricated by detonation gun spray on polymer-based composites[J]. Journal of Materials Engineering, 2018, 46 (6): 120- 124.
6 张凯, 吴连峰, 桂泰江, 等. 电磁屏蔽材料的研究与进展[J]. 材料导报, 2021, 35 (2): 513- 515.
6 ZHANG K , WU L F , GUI T J , et al. Research and development of electromagnetic shielding materials[J]. Materials Reports, 2021, 35 (2): 513- 515.
7 赵慧慧, 姬科举, 许银松, 等. GNS/PMMA泡沫复合材料的制备及其电磁屏蔽性能[J]. 材料科学与工程学报, 2014, 32 (3): 358- 365.
7 ZHAO H H , JI K J , XU Y S , et al. Preparation of GNS/PMMA foams for electromagnetic interference shielding[J]. Journal of Materials Science and Engineering, 2014, 32 (3): 358- 365.
8 王敬枫, 康辉, 成中军, 等. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49 (6): 14- 25.
8 WANG J F , KANG H , CHENG Z J , et al. Research progress in Ti3C2Tx MXene-based electromagnetic interference shielding material[J]. Journal of Materials Engineering, 2021, 49 (6): 14- 25.
9 LOUIS M , JOSHI S P , BPOCKMANN W . An experimental investigation of through-thickness electrical resistivity of CFRP laminates[J]. Composites Science & Technology, 2001, 61 (6): 911- 919.
10 SELVAKUMARAN L , LUBINEAU G . Electrical behavior of laminated composites with intralaminar degradation: a comprehensive micromeso homogenization procedure[J]. Composite Structures, 2014, 109 (1): 178- 188.
11 王程成, 贺德龙, 崔溢. 结构-导电复合材料研究进展[J]. 材料工程, 2018, 46 (9): 1- 13.
11 WANG C C , HE D L , CUI Y . Research progress in electrically conductive structural composites[J]. Journal of Materials Engineering, 2018, 46 (9): 1- 13.
12 陈宇, 张代军, 李军, 等. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48 (10): 82- 87.
12 CHEN Y , ZHANG D J , LI J , et al. Preparation and performance evaluation of carbon/epoxy composites modified with graphene prepregs[J]. Journal of Materials Engineering, 2020, 48 (10): 82- 87.
13 ZHANG R . Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles[J]. Journal of Materials Chemistry, 2010, 20 (10): 2018- 2023.
14 SHEN W Y , ESTEVEZ D , ZHOU L P , et al. Stretchable silver@CNT-poly(vinyl alcohol) films with efficient electromagnetic shielding prepared by polydopamine functionalization[J]. Polymer, 2022, 23, 124413.
15 闫丽丽, 乔妙杰, 雷忆三, 等. 化学镀镍碳纤维/环氧树脂复合材料电磁屏蔽性能[J]. 复合材料学报, 2013, 30 (2): 44- 49.
15 YAN L L , QIAO M J , LEI Y S , et al. EMI shielding effectiveness of electroless nickel-plated carbon fibers/exopy resin composites[J]. Acta Materiae Compositae Sinica, 2013, 30 (2): 44- 49.
16 ZENG Z , JIN H , CHEN M , et al. Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding[J]. Advanced Functional Materials, 2016, 26 (2): 303- 310.
17 XU Y , LI Y , HUA W , et al. Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property[J]. ACS Applied Materials & Interfaces, 2016, 8 (36): 24131.
18 温变英, 王雪娇, 方晓霞. 碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响[J]. 材料导报, 2018, 32 (12): 4346- 4350.
18 WEN B Y , WANG X J , FANG X X . Influence of carbon-based conductive filler's properties on the electromagnetic shielding effectiveness of PVB/filler functional composite films[J]. Materials Reports, 2018, 32 (12): 4346- 4350.
19 CHO J , JOSHI M S . Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles[J]. Composites Science and Technology, 2006, 66, 1941- 1952.
20 NAEEM S , BAHETI V , TUNAKOVA V , et al. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications[J]. Carbon, 2017, 111, 439- 447.
21 ZHAO B , WANG S , ZHAO C X , et al. Synergism between carbon materials and Ni chains in flexible poly (vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties[J]. Carbon, 2018, 127, 469- 478.
22 PENG M Y , QIN F X . Clarification of basic concepts for electromagnetic interference shielding effectiveness[J]. Journal of Applied Physics, 2021, 130 (22): 225108.
[1] 张金栋, 孙洪霖, 刘刚, 姚佳楠, 陈春海, 王明. 聚芳醚酮树脂非等温结晶动力学及其复合材料湿热老化性能[J]. 材料工程, 2022, 50(10): 139-147.
[2] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[3] 潘晨, 乔梁, 郑精武, 蔡伟, 应耀, 车声雷. 基于三辊分散原料的3Y-ZrO2/Al2O3陶瓷的制备与表征[J]. 材料工程, 2021, 49(3): 125-132.
[4] 卢国锋, 乔生儒, 焦更生, 徐浩龙. C/Mullite/Si-C-N复合材料的组织结构及其弯曲行为研究[J]. 材料工程, 2011, 0(9): 82-86,91.
[5] 王秀飞, 黄启忠, 苏哲安, 杨鑫, 吴才成, 宁克焱. 硅含量对C/C-SiC复合材料性能的影响[J]. 材料工程, 2007, 0(9): 47-50.
[6] 吕小军, 张琦, 马兆庆, 许俊华, 肖文萍. 湿热老化对碳纤维/环氧树脂基复合材料力学性能影响研究[J]. 材料工程, 2005, 0(11): 50-53,57.
[7] 简科, 陈国民, 陈朝辉, 马青松. SiC微粉含量对先驱体转化制备碳纤维布增强碳化硅复合材料性能的影响[J]. 材料工程, 2003, 0(12): 23-25,32.
[8] 简科, 陈朝辉, 陈国民, 马青松, 郑文伟. 裂解升温速率对聚碳硅烷先驱体转化制备Cf/SiC材料弯曲性能的影响[J]. 材料工程, 2003, 0(11): 11-13.
[9] 马恒怡, 黄玉东, 张志谦. 碳纤维γ射线辐照处理对其复合材料界面性能的影响[J]. 材料工程, 2000, 0(4): 26-29,33.
[10] 白世鸿, 乔生儒, 周少荣, 田朝旭. 温度对结构陶瓷弯曲性能的影响[J]. 材料工程, 1998, 0(4): 30-31.
[11] 刘绍伦, 涂柏林, 崔尚相. 陶瓷复合材料1000℃以上弯曲强度/断裂韧性测试技术[J]. 材料工程, 1997, 0(6): 6-8.
[12] 顾辉, 党旭佞, 张志谦. 双马体系对T-50/酚醛环氧复合材料层间剪切强度的影响[J]. 材料工程, 1995, 0(7): 20-22.
[13] 甘永学, 陈汴琨. 碳纤维/铜-5%锡基复合材料的弯曲性能[J]. 材料工程, 1991, 0(4): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn