Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (6): 35-39    DOI: 10.11868/j.issn.1001-4381.2014.06.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
热压形变参数对AZ31镁合金接头微观组织和力学性能的影响
初雅杰1,2, 李晓泉1, 吴申庆2, 徐振钦1, 杜舜尧1
1. 南京工程学院 材料工程学院, 南京 211167;
2. 东南大学 材料科学与工程学院, 南京 211189
Influence of Hot Compression Deformation on Microstructures and Mechanical Properties of Welded Joints for AZ31 Magnesium Alloy
CHU Ya-jie1,2, LI Xiao-quan1, WU Shen-qing2, XU Zhen-qin1, DU Shun-yao1
1. School of Material Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
2. School of Material Science and Engineering, South East University, Nanjing 211189, China
全文: PDF(2487 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用与母材同质的焊丝对AZ31镁合金板材进行手工钨极氩弧焊,利用真空热压炉及专门设计的夹装模具对焊接接头分别在250,300,350,400℃,应变速率为0.001s-1进行真空热压试验,通过电子拉伸试验仪、光学显微镜(OM)及扫描电镜(SEM)技术,研究镁合金焊接接头的力学性能和组织演化规律。结果表明:随着热压温度的升高,接头抗拉强度和伸长率不断增大,在350℃时,接头表现出最大的抗拉强度228MPa和伸长率10.2%,400℃时,强度和伸长率有所降低。在该工艺过程中,随着变形温度的升高,接头组织再结晶现象越来越明显,350℃时出现较多的动态再结晶核心和再结晶小晶粒,平均晶粒尺寸由46μm 细化至16μm左右,随着温度的升高,动态再结晶晶粒数量逐渐增加,400℃时,晶粒尺寸有所长大,平均晶粒尺寸为26μm,分布较均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初雅杰
李晓泉
吴申庆
徐振钦
杜舜尧
关键词 AZ31镁合金热压形变焊接接头显微组织    
Abstract:AZ31 magnesium alloy sheets were welded by manual TIG (tungsten insert gas) welding method with the same welding wire as filler material. The welded joints were compressed at 250,300,350,400℃ and strain rates of 0.001s-1 by a vacuum hot pressing furnace and a specially designed mold clamp. Microstructures and mechanical properties of welded joints with hot compression were analyzed by tensile test, optical metallographic microstructure (OM), scanning electronic microscopy (SEM). The results show that the tensile strength and elongation of the welded joint increase with the increasing temperature of hot compressing. The welded joint show the maximum tensile strength of 228MPa and elongation of 10.2% at 350℃, but lower at 400℃. The recrystallization phenomenon of joint is more and more obvious with the increasing deformation temperature in the process. Many dynamic recrystallization cores and small grains appear at 350℃ and the average grain size decreases from about 46μm to 16μm. As the temperature increases, the number of dynamic recrystallization grain is gradually increased. The grain size has grown up at 400℃, the average grain size is 26μm and evenly distributed.
Key wordsAZ31 magnesium alloy    hot compression deformation    welded joint    microstructure
收稿日期: 2012-11-14      出版日期: 2014-06-20
中图分类号:  TG146.2  
基金资助:国家自然科学基金资助项目(51075197);南京工程学院创新基金项目(CKJ2010004);南京工程学院博士基金项目(ZKJ201303)
通讯作者: 薛文斌(1968- ),男,教授,博士,主要从事材料表面改性研究,联系地址:北京师范大学核科学与技术学院(100875),E-mail:xuewb@bnu.edu.cn     E-mail: xuewb@bnu.edu.cn
作者简介: 初雅杰(1979- ),男,博士,现从事镁合金加工及焊接技术研究,联系地址:南京工程学院材料学院(211167),E-mail:yajiech@gmail.com
引用本文:   
初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
CHU Ya-jie, LI Xiao-quan, WU Shen-qing, XU Zhen-qin, DU Shun-yao. Influence of Hot Compression Deformation on Microstructures and Mechanical Properties of Welded Joints for AZ31 Magnesium Alloy. Journal of Materials Engineering, 2014, 0(6): 35-39.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.06.007      或      http://jme.biam.ac.cn/CN/Y2014/V0/I6/35
[1] 刘楚明, 刘子娟, 朱秀荣, 等. 镁及镁合金动态再结晶研究进展[J]. 中国有色金属学报, 2006, 16(1): 1-12. LIU Chu-ming, LIU Zi-juan, ZHU Xiu-rong, et al. Research and development progress of dynamic recrystallization in pure magnesium and its alloys[J]. The Chinese Journal of Nonferrous Metals, 2006, 16(1): 1-12.
[2] 武婧亭, 游国强, 郭强, 等. AZ71镁合金TIG焊焊接接头微观组织与力学性能[J]. 热加工工艺, 2011, (1):117-118.WU Jing-ting, YOU Guo-qiang, GUO Qiang, et al. Microstructure and mechanical properties of joints of AZ71 alloy by TIG welding[J]. Hot Working Technology, 2011, (1):117-118.
[3] 冯吉才, 王亚荣, 张忠典. 镁合金焊接技术的研究现状及应用[J]. 中国有色金属学报, 2005, 15(2): 165-178.FENG Ji-cai, WANG Ya-rong, ZHANG Zhong-dian. Status and expectation of research on welding of magnesium alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(2): 165-178.
[4] MORDIKE B L, EBERT T. Magnesium properties applications potential[J]. Materials Science and Engineering: A, 2001, 302 (1): 37-45.
[5] 杨林, 黄婷, 林立, 等. 室温压缩AZ91镁合金显微组织及β-Mg17Al12相析出动力学[J]. 材料工程, 2012, (4): 68-71.YANG Lin, HUANG Ting, LIN Li, et al. Microstructure and precipitation kinetics of β-Mg17Al12 phase in AZ91 alloy compressed at room temperature[J]. Journal of Materials Engineering, 2012, (4): 68-71.
[6] 马力, 龙伟民, 乔培新, 等. Zn-Mg钎料钎焊镁合金AZ31B的显微组织与力学性能[J]. 焊接学报, 2011, (7): 59-62.MA Li, LONG Wei-min, QIAO Pei-xin, et al. Microstructure and mechanical properties of magnesium alloy AZ31B solder joint using Zn-Mg filler metal[J]. Transactions of the China Welding Institution, 2011, (7): 59-62.
[7] 谭兵, 陈东高, 高明, 等. AZ31B变形镁合金激光-MIG复合焊焊接组织和性能分析[J]. 航空材料学报, 2008, 28(6): 36-41.TAN Bing, CHEN Dong-gao, GAO Ming, et al. Microstructure and properties of welding joints for laser-MIG welding of AZ31B transformative magnesium[J]. Journal of Aeronautical Materials, 2008, 28(6): 36-41.
[8] 罗君, 刘政军, 苏允海, 等. 纵向直流磁场对AZ31镁合金TIG焊焊接接头组织及性能的影响[J]. 焊接学报, 2007, (7): 53-59. LUO Jun, LIU Zheng-jun, SU Yun-hai, et al. Influence of longitudinal direct current magnetic field on microstructure and property of AZ31 magnesium alloy TIG welded joint[J]. Transactions of the China Welding Institution, 2007, (7): 53-59.
[9] MUNITZ A, COTLER C. Electron beam welding of magnesium AZ91D plates[J]. Welding Journal, 2000, 79(7): 202-208.
[10] GUENTHER S, ARMANDO J. Electron beam process delivers consistent welds[J]. Welding Journal, 2001, 80(6): 53-57.
[11] 詹美燕, 李春明, 张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48(6): 709-716. ZHAN Mei-yan, LI Chun-ming, ZHANG Wei-wen. An EBSD study on the microstructure and texture evolution of AZ31 magnesium alloy during accumulative roll-bonding[J]. Acta Metallurgica Sinica, 2012, 48(6): 709-716.
[12] WANG Hong-ying, LI Zhi-jun. Effect of filler wire on the joint properties of AZ31 magnesium alloys using CO2 laser welding[J]. China Welding, 2007, 16(2): 16-21.
[13] LEE W B, YEON Y M, JUNG S B. Joint properties of friction stir welded AZ31B-H24 magnesium alloy[J]. Materials Science and Technology, 2003, 19(6): 785-790.
[14] 中国国家标准化管理委员会. 焊接接头机械性能试验取样方法[M].2版.北京: 中国标准出版社, 1989.
[15] 游国强, 张均成, 王向杰, 等. 压铸态AZ91D镁合金搅拌摩擦焊接头微观组织研究[J]. 材料工程, 2012, (5): 54-58. YOU Guo-qiang, ZHANG Jun-cheng, WANG Xiang-jie, et al. Microstructure of FSW joint of die-casting AZ91D magnesium alloy[J]. Journal of Materials Engineering, 2012, (5): 54-58.
[16] 杨续跃, 张雷. 镁合金温变形过程中的孪生及孪晶交叉[J]. 金属学报, 2009, 45(11): 1303-1308. YANG Xu-yue, ZHANG Lei. Twinning and twin intersection in AZ31 Mg alloy during warm deformation[J]. Acta Metallurgica Sinica, 2009, 45(11): 1303-1308.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[4] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[5] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[6] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[7] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[8] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[9] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[10] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[11] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[12] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[13] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[14] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[15] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn