Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 67-71    DOI: 10.11868/j.issn.1001-4381.2014.08.013
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
基于非等温法的耐高温环氧树脂体系固化反应动力学研究
曹伟伟1,2, 朱波3, 朱文滔3, 王永伟3, 龙国荣2
1. 天津工业大学 材料科学与工程学院, 天津 300387;
2. 泰山体育产业集团有限公司, 山东 乐陵 253600;
3. 山东大学 材料科学与工程学院, 济南 250061
Curing Reaction Kinetics of Heat-resistant Epoxy Resin System by Non-isothermal Method
CAO Wei-wei1,2, ZHU Bo3, ZHU Wen-tao3, WANG Yong-wei3, LONG Guo-rong2
1. College of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
2. Taishan Sports Industry Group, Leling 253600, Shandong, China;
3. College of Materials Science and Engineering, Shandong University, Jinan 250061, China
全文: PDF(1875 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用不同升温速率下的非等温DSC研究一种TR1219B耐高温环氧树脂体系的固化反应,分别通过n级反应模型和Malek最大概然机理函数法确定固化反应机理函数,求解固化反应动力学参数,得到固化反应动力学模型。结果表明:通过Kissinger和Crane方法求解动力学参数所得到的n级反应模型与实验值差别较大;采用Malek方法判别机理表明,该固化反应按照自催化反应机理进行,实验得到的DSC曲线与模型计算所得到的曲线吻合良好,所确立的模型在5~20K/min的升温速率下能较好地描述该环氧体系的固化反应过程。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹伟伟
朱波
朱文滔
王永伟
龙国荣
关键词 环氧树脂固化反应动力学模型Malek法DSC    
Abstract:The curing processing of TR1219B heat-resistant epoxy system was studied by non-isothermal differential scanning calorimetry (DSC) at different heating rates. The curing kinetic mechanism function and the kinetic parameters were determined using n order reaction model and the most probability mechanism function method given by Malek respectively, and the kinetic model was built. The results indicate that the n order model deviates significantly from experimental data by Kissinger and Crane methods. While the most probability mechanism function method show that the process of curing reactions follows an autocatalytic reaction, and the DSC curves from the autocatalytic model can well agree with that of experiment, the autocatalytic model can well depict the curing reaction process of the studied epoxy resins in the range of 5-20K/min.
Key wordsepoxy resin    curing reaction    kinetic model    Malek method    DSC
收稿日期: 2013-02-04      出版日期: 2014-08-20
中图分类号:  TQ323.5  
基金资助:国家863计划资助项目(2009AA035301);中国博士后基金资助项目(2012M511544)
通讯作者: 朱波(1969-),男,博士,教授,博士生导师,主要从事高性能树脂、炭纤维树脂基复合材料的研究工作,联系地址:山东省济南市历下区经十路17923号山东大学千佛山校区主楼311(250061),E-mail:zhubo@sdu.edu.cn     E-mail: zhubo@sdu.edu.cn
引用本文:   
曹伟伟, 朱波, 朱文滔, 王永伟, 龙国荣. 基于非等温法的耐高温环氧树脂体系固化反应动力学研究[J]. 材料工程, 2014, 0(8): 67-71.
CAO Wei-wei, ZHU Bo, ZHU Wen-tao, WANG Yong-wei, LONG Guo-rong. Curing Reaction Kinetics of Heat-resistant Epoxy Resin System by Non-isothermal Method. Journal of Materials Engineering, 2014, 0(8): 67-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.08.013      或      http://jme.biam.ac.cn/CN/Y2014/V0/I8/67
[1] 黄发荣, 周燕. 先进树脂基复合材料[M].北京:化学工业出版社,2008.139-251.
[2] 陈平, 王德中. 环氧树脂及其应用[M].北京:化学工业出版社, 2006.278-313.
[3] 张以河. 复合材料学[M].北京:化学工业出版社,2011.
[4] 于佳, 张博明, 王殿富, 等. 典型双马来酰亚胺树脂固化动力学模型的研究[J]. 复合材料学报,2011,21(1):78-83.YU J, ZHANG B M, WANG D F, et al. Study of cure kinetic model of typical bismeleimide[J]. Acta Materiae Composite Sinica,2011,21(1):78-83.
[5] ROSU D, CASCAVAL C N, MUSTATA F, et al. Cure kinetics of epoxy resins studied by non-isothermal DSC data[J]. Thermochimica Acta,2002,383(1-2):119-127.
[6] ROSU D, MUSTATA F, CASCAVAL C N. Investigation of the curing reaction of some multifunctional epoxy resins using differential scanning calorimetry[J]. Thermochimica Acta,2001,370(1-2):105-110.
[7] DONGHYON KIM, JUNG-OK BEAK, YOUNGSON CHOE. Cure kinetics and mechanical properties of the blend system of epoxy/diaminodiphenyl sulfone and amine terminated polyetherimide-carboxyl terminated poly(butadiene-co-acrylonitrile) block copolymer[J]. Korean Chemical Engineer,2005,22(5):34-36.
[8] PARK SOOJIN, JIN F L. Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with an-hydride[J]. Polymer Degradation and Stability,2004,86(3):515-520.
[9] ROUISON D, SAIN M, COUTURIER M. Resin transfer molding of natural fiber reinforced plastic I: kinetics study of an unsaturated polyester resin containing an inhibitor and various promoters[J]. Journal of Applied Polymer Science,2003,89(9):2553-2561.
[10] 徐永芬, 虞鑫海, 赵炯心, 等. 多官能环氧树脂/2, 2, -双(3-氨基-4-羟基苯基)六氟丙烷体系的固化反应动力学研究[J]. 绝缘材料,2007,40(4):42-44. XU Yong-fen, YU Xin-hai, ZHAO Jiong-xin, et al. Study on the cure kinetics of the multifunctional epoxy resin/2,2,-bis(3-amino-4-hydroxyhpenyl) hexafluoro propane system[J]. Insulating Materials,2007,40(4):42-44.
[11] 赵卫娟, 张佐光, 孙志杰, 等. 非等温法研究TGDDM/DDS体系固化反应动力学[J]. 高分子学报,2006,(4):564-568. ZHAO Wei-juan, ZHANG Zuo-guang, SUN Zhi-jie, et al. Cure kinetics of TGDDM/DDS system studied by non-isothermal method[J]. Acta Polymerica Sinica,2006,(4):564-568.
[12] 袁钻如, 谢鸿峰, 刘炳华, 等. 碳纳米管/环氧树脂复合物的固化行为[J]. 高分子材料科学与工程,2005,21(5):631-637. YUAN Zuan-ru, XIE Hong-feng, LIU Bing-hua, et al. Study of curing behaviors of carbon nanotubes/epoxy composites[J]. Polymer Materials Science & Engineering,2005,21(5):631-637.
[13] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):1702-1707.
[14] CRANE L W, DYNES P J, KAELBLE D H. Analysis of curing kinetics in polymer composites[J]. Journal of Polymer Science,1973,11(8):533-540.
[15] MALEK J. The kinetics analysis of non-isothermal data[J]. Thermochimica Acta,1992,200(1-2):257-269.
[16] MONTSERRAT S, MALEK J. A kinetic analysis of the curing reaction of an epoxy resin[J]. Thermochimica Acta,1993,228(1-2):47-60.
[17] SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis and Calorimetry,1977,11(3):445-447.
[18] MALEK J. Kinetics analysis of crystallization processes in amorphous materials[J]. Thermochimica Acta,2000,355(1-2):239-253.
[19] SESTAK J, BERGGREN G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures[J]. Thermochimica Acta,1971,3(1):1-12.
[1] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[2] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[3] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[4] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[5] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[6] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[7] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[8] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[9] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[10] 林广鸿, 尹敬峰, 黄鸿, 黄伟滨, 蔡慕华, 向洪平, 刘晓暄. 混杂光固化3D打印树脂固化动力学性能[J]. 材料工程, 2019, 47(12): 143-150.
[11] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[12] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[13] 张博文, 唐禹尧, 崔玉青, 魏玮, 李小杰, 罗静, 刘晓亚. 六咪唑环三磷腈的合成及其作为环氧树脂固化促进剂的性能[J]. 材料工程, 2019, 47(1): 91-96.
[14] 乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
[15] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn