Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 1-10    DOI: 10.11868/j.issn.1001-4381.2014.12.001
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响
刘鹏, 江海涛, 段晓鸽, 康强
北京科技大学 高效轧制国家工程研究中心, 北京 100083
Effects of Yttrium(Y) and Cerium(Ce) on Microstructure and Stretch Formability of Hot Rolled Mg-1.5Zn Magnesium Sheet at Room Temperature
LIU Peng, JIANG Hai-tao, DUAN Xiao-ge, KANG Qiang
National Engineering Research Center of Advanced Rolling, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(6681 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 设计了成分为Mg-1.5Zn-xY和Mg-1.5Zn-xCe(x=0,0.2,0.5,1.0)两组试样.通过光学显微镜、扫描电镜、X衍射等研究稀土Y和Ce对热轧态Mg-1.5Zn合金组织和室温成形性能的影响.结果表明:Y和Ce元素可以有效地弱化合金的(0002)基面织构,而且基面织构均沿着TD方向发生一定程度的分裂.Y和Ce元素的加入,使合金中分别形成了Mg2Y5,Mg3Zn3Y和MgZnCe弥散的第二相粒子,起到了细晶强化作用.此外,还有利于合金再结晶行为的发生,使得合金塑性(伸长率最高达27%)、强度(抗拉强度最高达252MPa)和室温成形性能(杯突值最高可达5.46)都得到很大提高.但是,过多Y和Ce的加入将不利于合金性能的进一步提高.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鹏
江海涛
段晓鸽
康强
关键词 镁合金稀土元素基面织构力学性能成形性能    
Abstract:Mg-1.5Zn-xY and Mg-1.5Zn-xCe (x= 0,0.2,0.5,1.0) alloys were designed to investigate the effect of Y and Ce on microstructure and formability of hot rolled Mg-1.5Zn sheet at room temperature via optical microscope(OM), scanning electron microscopy(SEM) and X-ray diffraction(XRD) etc. The results show that Y and Ce elements can effectively weaken and modify the basal texture where the position of basal plane is tilted from normal direction(ND) toward transverse direction(TD). The formation of second phase particles Mg2Y5,Mg3Zn3Y and MgZnCe due to the addition of Y and Ce element plays a fine grain size strengthening role in the alloys. Besides, it is conducive to the recrystallization, leading to the great improvement of ductility (the maximum of elongation is 27%), strength (the maximum of tensile strength is 252MPa) and stretch formability (the maximum of Erichsen value is 5.46) of alloys. However, excessive addition of Y and Ce elements is harmful to further improvement of alloys' performance.
Key wordsmagnesium alloy    rare-earth    basal texture    mechanical property    stretch formability
收稿日期: 2014-07-07      出版日期: 2014-12-20
中图分类号:  TG146.2  
通讯作者: 江海涛(1976-),男,博士,副研究员,从事镁合金、铝合金、钛合金品种开发和成型性研究工作,联系地址:北京市海淀区学院路30号北京科技大学科技楼708(100083)     E-mail: nwpujht@163.com
引用本文:   
刘鹏, 江海涛, 段晓鸽, 康强. 稀土元素Y和Ce对热轧Mg-1.5Zn镁合金组织和室温成形性能的影响[J]. 材料工程, 2014, 0(12): 1-10.
LIU Peng, JIANG Hai-tao, DUAN Xiao-ge, KANG Qiang. Effects of Yttrium(Y) and Cerium(Ce) on Microstructure and Stretch Formability of Hot Rolled Mg-1.5Zn Magnesium Sheet at Room Temperature. Journal of Materials Engineering, 2014, 0(12): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.001      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/1
[1] CHINO Y, HUANG X, SUZUKI K, et al. Influence of Zn concentration on stretch formability at room temperature of Mg-Zn-Ce alloy[J]. Materials Science and Engineering:A,2010,528(2):566-572.
[2] 康峰,程平,吴海英. 镁合金中〈c+a〉锥面滑移系开动的条件[J]. 材料导报,2012,26(19):141-144.KANG F, CHENG P, WU H Y. The activation condition of 〈c+a〉 non-basal slip in magnesium alloys[J]. Materials Review,2012,26(19):141-144.
[3] YOO M H. Slip, twinning,and fracture in hexagonal closed-packed metals [J].Metallurgical Transaction A,1981,12(3):471.
[4] MATHIS K, NVILAS K, AXT A, et al. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction [J]. Acta Materialia, 2004,52(10):2889-2894.
[5] QIAN MA, DAS A. Grain refinement of magnesium alloys by zirconium:formation of equiaxed grains[J]. Scripta Materialia,2006,54(5):881-886.
[6] WANG Y N, HUANG J C. Texture analysis in hexagonal materials[J]. Materials Chemistry Physics,2003,81(1):11-26.
[7] AGEW S R, YOO M H, TOME C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[J]. Acta Mater,2001,49(20):4277-4289.
[8] PEREZ-PRADO M T, DEL VALLE J A, RUANO O A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling[J]. Scripta Materialia,2003,50(5):667-671.
[9] STANFORD N. Micro-alloying Mg with Y,Ce,Gd and La for texture modification:a comparative study[J]. Materials Science and Engineering:A,2010,527(10):2669-2677.
[10] DOBRON P, BALIK J, CHMELIK F, et al. A study of mechanical anisotropy of Mg-Zn-rare earth alloy sheet[J]. Journal of Alloys and Compounds,2014,588(11):628-632.
[11] HUANG X S, SUZUKI K, CHINO Y. Static recrystallization and mechanical properties of Mg-4Y-3RE magnesium alloy sheet processed by differential speed rolling at 823K[J]. Materials Science and Engineering:A,2012,538(1):281-287.
[12] BOHLEN J, NURNBERG M R, SENN J W, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Materialia,2007,55(6):2101-2112.
[13] TONG G D, LIU H F, LIU Y H. Effect of rare earth additions on microstructure and mechanical properties of AZ91 magnesium alloys[J]. Transactions of Nonferrous Metals Society of China,2010,20:336-340.
[14] 张诗昌,段汉桥,蔡启舟,等. 主要合金元素对镁合金组织和性能的影响[J].铸造,2001,50(6):310-315. ZHANG S C, DUAN H Q, CAI Q Z, et al. Effect of the main alloying elements on microstructure and properties of magnesium alloys[J]. Foundry,2001,50(6):310-315.
[15] KIM D W, SUH B C, SHIM M S, et al. Texture evolution in Mg-Zn-Ca alloy sheets[J]. Metallurgical and Materials Transactions A,2013,44(7):2950-2961.
[16] CHINO Y, KIMURA K, MABUCHI M. Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloy sheets[J].Acta Materialia,2009,57(5):1476-1485.
[17] CHINO Y, KADO M, MABUCHI M. Enhancement of tensile ductility and stretch formability of magnesium by addition of 0.2Ce[J]. Materials Science and Engineering:A,2008,494(1):343-349.
[18] CHINO Y, SASSA K, MABUCHI M. Texture and stretch formability of a rolled Mg-Zn alloy containing dilute content of Y[J]. Materials Science and Engineering:A,2009,513(1):394-400.
[19] 唐伟琴,张少睿,范晓慧,等. AZ31镁合金的织构对其力学性能的影响[J]. 中国有色金属学报,2010,20(3):371-378. TANG W Q, ZHANG S R, FAN X H, et al. Texture and its effect on mechanical properties of AZ31 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals,2010,20(3):371-378.
[20] YI S, BOHLEN J, HEINEMANN F, et al. Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets[J]. Acta Materialia,2009,58(2):592-605.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[3] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[4] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[5] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[6] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[7] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[8] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[9] 李英民, 马鸣檀, 任玉艳, 刘桐宇. 稀土La掺杂Mg2Si的几何结构、弹性性能和电子结构的第一性原理研究[J]. 材料工程, 2020, 48(4): 100-107.
[10] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[11] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[12] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[13] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[14] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[15] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn