Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 67-71    DOI: 10.11868/j.issn.1001-4381.2015.03.012
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
非晶增强铝基复合材料的微观结构及腐蚀性能
刘鹏1, 李士凯2, 张元彬1, 刘燕1
1. 山东建筑大学 材料科学与工程学院, 济南 250101;
2. 山东劳动职业技术学院, 济南 250022
Microstructure and Corrosion Properties of Aluminum Matrix Composite Reinforced with Al-based Amorphous
LIU Peng1, LI Shi-kai2, ZHANG Yuan-bin1, LIU Yan1
1. School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101, China;
2. Shandong Labor Vocational and Technical College, Jinan 250022, China
全文: PDF(1929 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用扫描电镜(SEM)、透射电镜(TEM)及电化学腐蚀等测试手段对搅拌摩擦加工制备获得的新型非晶增强铝基复合材料的微观组织结构及腐蚀性能进行实验研究。 实验结果表明,新型非晶增强铝基复合材料呈现典型的层状结构,且组织呈现一定的纳米级的超细晶结构,主要由α-Al及α-Al非晶结构组成的并伴有Al-Cu-Mg系析出相存在,与母材相比抗拉强度得到了较大的提高,而添加非晶形成的复合材料的电化学腐蚀性能相比未添加非晶基体材料加工后的腐蚀性能有所提高,但两种加工条件下材料的抗腐蚀性能均低于母材。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鹏
李士凯
张元彬
刘燕
关键词 搅拌摩擦加工金属基复合材料微观组织腐蚀电子衍射    
Abstract:The microstructure and corrosion properties of a novel Al-based amorphous reinforced aluminum matrix composite fabricated by friction stir processing (FSP) were studied by scanning electron microscope(SEM), transmission electron microscope(TEM) and electrochemical corrosion test methods. The test results show that the composite exhibits the typical layered structure with a combination of the base metal and the amorphous strip via the FSP, and shows a large amount of nanosized ultrafine structure which are mainly composed of the α-Al and α-Al amorphous structure with Al-Cu-Mg series precipated phase existing in the composite. The tensile strength of composite is improved a lot compared with the base metal. The electrochemical corrosion behavior of the composite with amorphous strip is also improved compared with that without amorphous strip, but, in both cases, the corrosion bebaviour is lower than the base metal.
Key wordsfriction stir processing    metal matrix composite    microstructure    corrosion    electron diffraction
收稿日期: 2013-12-12      出版日期: 2015-03-20
中图分类号:  TB331  
基金资助:国家自然科学基金(51305240)
通讯作者: 刘鹏(1979-),男,副教授,博士,主要从事轻金属连接及表面强化技术研究,联系地址:济南市临港开发区凤鸣路山东建筑大学材料学院(250101),liupeng1286@163.com     E-mail: liupeng1286@163.com
引用本文:   
刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
LIU Peng, LI Shi-kai, ZHANG Yuan-bin, LIU Yan. Microstructure and Corrosion Properties of Aluminum Matrix Composite Reinforced with Al-based Amorphous. Journal of Materials Engineering, 2015, 43(3): 67-71.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.03.012      或      http://jme.biam.ac.cn/CN/Y2015/V43/I3/67
[1] 李文龙, 夏春, 邢丽, 等. 搅拌针形状对搅拌摩擦加工制备CNTs/铝基复合材料均匀性的影响[J].材料工程, 2014, (1): 75-78.LI Wen-long, XIA Chun, XING Li, et al. Influence of pin shape on homogeneity of CNTs distribution in CNTs/Al composite fabricated by friction stir processing[J]. Journal of Materials Engineering, 2014, (1):75-78.
[2] MISHRA R S, MA Z Y, CHARIT I. Friction stir processing: a novel technique for fabrication of surface composite[J]. Materials Science and Engineering A, 2003, 341 (1-2): 307-310.
[3] 骆蕾, 沈以赴, 李博, 等. 搅拌摩擦焊搭接法制备TC4钛合金表面Al涂层及其高温氧化行为[J]. 金属学报, 2013, 49 (8): 996-1002.LUO Lei, SHEN Yi-fu, LI Bo, et al. Preparation and oxidation behaviour of aluminized coating on TC4 titanium alloy via friction stir lap welding method[J]. Acta Metallurgica Sinica, 2013, 49 (8): 996-1002.
[4] EI-DANAF E A, EI-RAYES M M, SOlIMAN M S. Friction stir processing: An effective technique to refine grain structure and enhance ductility[J]. Materials and Design, 2010, 31 (3): 1231-1236.
[5] CAVALIERE P. Mechanical properties of friction stir processed 2618/Al2O3/20p metal matrix composite[J]. Composites Part A, 2005, 36 (12): 1657-1665.
[6] MORISADA Y, FUJII H, NAGAOKA T, et al. MWCNTs/AZ31 surface composites fabricated by friction stir processing[J]. Materials Science and Engineering A, 2006, 419 (1-2): 344-348.
[7] INOUE A. Stabilization of metallic super-cooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48 (1): 279-306.
[8] TAKIGAWA Y, KOBATA J, CHUNG S W, et al. Microstructural change by friction stir processing in Zr-Al-Cu-Ni bulk metallic glass[J]. Materials Transactions, 2007, 48 (7): 1580-1583.
[9] KOBATA J, TAKIGAWA Y, HUNG S W, et al. Effects of size and volume fraction of precipitated crystalline phase induced by friction stir processing on hardness in Zr-Al-Ni-Cu bulk metallic glass[J]. Materials Transactions, 2007, 48 (9): 2409-2413.
[10] 刘鹏, 史清宇, 边秀房, 等. 新型非晶增强铝基复合材料的制备及组织性能[J]. 焊接学报, 2009, 30(10): 13-16. LIU Peng, SHI Qing-yu, BIAN Xiu-fang, et al. Microstructure of a novel Al-based amorphous reinforced aluminum metal matrix composite[J]. Transations of the China Welding Institution, 2009, 30 (10): 13-16.
[11] RHODES C G, MAHONEY M W, BINGEL W H, et al. Effects of friction stir welding on microstructure of 7075 aluminum[J]. Scripta Materialia, 1997, 36(1): 69-75.
[12] SU J Q, NELSON T W, STERLING C J. A new route to bulk nanocrystalline materials[J]. Journal of Materials Research, 2003, 18 (8): 1757-1760.
[13] JIANG X P, WANG X Y, LI J X, et al. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting[J]. Materials Science and Engineering A, 2006, 429 (1-2): 30-35.
[1] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[2] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[3] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[4] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[5] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[6] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[7] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[8] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[9] 刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展[J]. 材料工程, 2020, 48(10): 17-27.
[10] 林盼盼, 马典, 李昊岳, 王子鸣, 何鹏, 林铁松, 龙伟民. AlNP/Al复合材料与6061Al低温连接组织演变机理及力学性能[J]. 材料工程, 2020, 48(10): 133-140.
[11] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[12] 董建民, 李嘉荣, 韩梅. 检验腐蚀对镍基单晶高温合金高周疲劳性能的影响[J]. 材料工程, 2020, 48(1): 77-83.
[13] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[14] 林梦晓, 张杰, 蒋全通, 李佳润, 路东柱, 侯保荣, 孙园园. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48(1): 98-107.
[15] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn