Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (11): 10-14    DOI: 10.11868/j.issn.1001-4381.2016.000152
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
“超材料”结构吸波复合材料技术研究
礼嵩明1,2, 蒋诗才1,2, 望咏林3, 顾涧潇1,2, 邢丽英1,2,*()
1 中航工业复合材料技术中心, 北京 100095
2 中国航发北京航空材料 研究院 先进复合材料重点实验室, 北京 100095
3 中国航发北京航空 材料研究院, 北京 100095
Study on "Metamaterial" Structural Absorbing Composite Technology
Song-ming LI1,2, Shi-cai JIANG1,2, Yong-lin WANG3, Jian-xiao GU1,2, Li-ying XING1,2,*()
1 AVIC Composite Technology Center, Beijing 100095, China
2 Science and Technology on Advanced Composites Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
3 AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(1301 KB)   HTML ( 61 )  
输出: BibTeX | EndNote (RIS)      
摘要 

研究了"超材料"结构吸波复合材料的制备技术及其力学性能与电性能。通过突破不同尺寸金属周期结构单元制备、金属周期结构单元转移、含金属周期结构单元吸波复合材料工艺参数优化等关键技术,制备出电性能和力学性能批次间稳定性良好的含多层金属周期结构单元的"超材料"结构吸波复合材料,"超材料"结构吸波复合材料在2~18GHz频率范围具有宽频高吸收的特性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
礼嵩明
蒋诗才
望咏林
顾涧潇
邢丽英
关键词 超材料结构吸波复合材料力学性能吸波性能    
Abstract

The process technology and the mechanical and electrical properties of the "metamaterial"structural absorbing composites were studied, in which metal periodic structure units were produced on the organic carrier film and then combined with medium. Through the breakthrough of key technologies involving producing different size metal periodic structure, the transfer of metal periodic structure, and optimizing process parameters, the "metamaterial" structural absorbing composite with good wave-absorbing and mechanical stabilities that contained multi-layer metal periodic structure was prepared. The "metamaterial" structural absorbing composite has a high broadband absorbing property in the frequency range of 2-18GHz.

Key wordsmetamaterial    structural absorbing composite    mechanical property    microwave absorbing property
收稿日期: 2016-01-31      出版日期: 2017-11-18
中图分类号:  TB332  
基金资助:国家973课题资助项目(2011CB013403)
通讯作者: 邢丽英     E-mail: vcd4321@sina.com
作者简介: 邢丽英(1965-), 女, 研究员, 博士, 主要从事树脂基复合材料领域研究, 联系地址:北京市81信箱3分箱(100095), E-mail:vcd4321@sina.com
引用本文:   
礼嵩明, 蒋诗才, 望咏林, 顾涧潇, 邢丽英. “超材料”结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11): 10-14.
Song-ming LI, Shi-cai JIANG, Yong-lin WANG, Jian-xiao GU, Li-ying XING. Study on "Metamaterial" Structural Absorbing Composite Technology. Journal of Materials Engineering, 2017, 45(11): 10-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000152      或      http://jme.biam.ac.cn/CN/Y2017/V45/I11/10
Fig.1  “超材料”结构吸波复合材料示意图
Solvent type Condition Result
95%CH3CH2OH 25℃,15min No damage
CH3COH3 25℃,15min Slight corrosion
18%HCl 40℃,30min No damage
1mol/L CuCl2 40℃,30min No damage
1mol/L NaOH 40℃,30min Slight corrosion
Table 1  有机载体膜耐溶剂实验结果
Infrared heat treatment temperature/℃ Plating power/
kW
Result
Room temperature 9 Completely fallen off
100 9 Partly fallen off
150 9 No fallen off
200 9 Partly fallen off
300 9 Partly fallen off
Table 2  红外热处理温度对附着力的影响
Plasma treatment power/kW Plating power/
kW
Result
0 9 Completely fallen off
0.6 9 Partly fallen off
1.2 9 No fallen off
1.5 9 Partly fallen off
2.0 9 Partly fallen off
Table 3  等离子体处理功率对附着力的影响
Fig.2  边长为6mm的金属周期结构单元
Pretreatment time/h State of absorbent migration
0.5 Absorbent covered about 90% area
1.5 Absorbent covered about 50% area
2.0 Absorbent covered about 30% area
2.5 No absorbent migration
3.0 No absorbent migration
Table 4  预处理时间对吸收剂迁移的影响
Fig.3  “超材料”结构吸波复合材料
Absorbing composite type Batch Tensile strength/
MPa
Tensile modulus/
GPa
Compressive strength/
MPa
Compressive modulus/
GPa
Bending strength/
MPa
Bending modulus/
GPa
Interlaminar shear strength/
MPa
No periodic structure 583 29.0 232 27.9 477 25.8 37.38
Multi-layer 1 568 28.7 226 27.7 479 25.9 37.00
periodic structure 2 564 29.3 228 28.3 477 25.5 36.58
Table 5  不同吸波复合材料室温力学性能测试结果
Fig.4  不同吸波复合材料的吸波性能(厚度5mm)
1 随赛, 马华, 王冬骏, 等. 一种超宽带、轻质、宽入射角超材料吸波体的拓扑优化设计[J]. 功能材料, 2015, 46 (23): 23056- 23059.
doi: 10.3969/j.issn.1001-9731.2015.23.012
1 SUI S , MA H , WANG D J , et al. The design and optimization of an ultra-broad band, light-weight, and wide incident angle metamaterial absorber based on topology optimization[J]. Journal of Functional Materials, 2015, 46 (23): 23056- 23059.
doi: 10.3969/j.issn.1001-9731.2015.23.012
2 沈杨, 裴志斌, 屈绍波, 等. 加载髙介电薄层的宽带频率选择表面吸波材料设计与制备研究[J]. 功能材料, 2015, 46 (19): 19075- 19078.
doi: 10.3969/j.issn.1001-9731.2015.19.016
2 SHEN Y , PEI Z B , QU S B , et al. Design and fabrication of a wideband frequency selective surface absorber loaded with a high dielectric thin layer[J]. Journal of Functional Materials, 2015, 46 (19): 19075- 19078.
doi: 10.3969/j.issn.1001-9731.2015.19.016
3 张朝发, 李焕喜, 吕明云. 吸波材料与FSS复合的隐身技术研究进展[J]. 材料导报, 2007, 21 (1): 118- 121.
3 ZHANG C F , LI H X , LV M Y . Development of stealth technique compounded radar absorbing material and FSS[J]. Materials Review, 2007, 21 (1): 118- 121.
4 邢丽英, 蒋诗才, 李斌太. 含电路模拟结构吸波复合材料[J]. 复合材料学报, 2004, 21 (6): 27- 33.
4 XING L Y , JIANG S C , LI B T . Microwave absorbing composite with circuit analogue[J]. Acta Materiae Compositae Sinica, 2004, 21 (6): 27- 33.
5 刘海韬, 程海峰, 成绍军. 电阻型容性频率选择表面吸收体吸波性能研究[J]. 航空材料学报, 2007, 27 (6): 69- 74.
5 LIU H T , CHENG H F , CHENG S J . Absorbing properties of resistive capacitive FSS absorbers[J]. Journal of Aeronautical Materials, 2007, 27 (6): 69- 74.
6 孙良奎, 程海峰, 周永江, 等. 一种基于超材料的吸波材料的设计与制备[J]. 物理学报, 2011, 60 (10): 108901-1- 5.
6 SUN L K , CHENG H F , ZHOU Y J , et al. Design and preparation of a radar-absorbing material based on metamaterial[J]. Acta Physica Sinica, 2011, 60 (10): 108901-1- 5.
7 刘海韬, 程海峰, 楚增勇, 等. 频率选择表面(FSS)在雷达吸波材料中的应用及最新进展[J]. 材料导报, 2005, 19 (9): 30- 32.
7 LIU H T , CHENG H F , CHU Z Y , et al. The application and latest development of FSS in radar absorbing materials[J]. Materials Review, 2005, 19 (9): 30- 32.
8 周卓辉, 黄大庆, 刘晓来, 等. 超材料在宽频微波衰减吸收材料中的应用研究进展[J]. 材料工程, 2014, (5): 91- 96.
doi: 10.11868/j.issn.1001-4381.2014.05.016
8 ZHOU Z H , HUANG D Q , LIU X L , et al. Application developments of metamaterials in wideband microwave absorbing materials[J]. Journal of Materials Engineering, 2014, (5): 91- 96.
doi: 10.11868/j.issn.1001-4381.2014.05.016
9 黄大庆, 康飞宇, 周卓辉, 等. 超材料结构单元轮廓法对吸波材料衰减吸收频带的拓宽与优化[J]. 材料工程, 2014, (11): 1- 6.
doi: 10.11868/j.issn.1001-4381.2014.11.001
9 HUANG D Q , KANG F Y , ZHOU Z H , et al. Broadening and optimizing microwave absorbing bandwidth by metamaterial unit contour method[J]. Journal of Materials Engineering, 2014, (11): 1- 6.
doi: 10.11868/j.issn.1001-4381.2014.11.001
10 张勇, 张斌珍, 段俊萍, 等. 超材料在完美吸波器中的应用[J]. 材料工程, 2016, 44 (11): 120- 128.
doi: 10.11868/j.issn.1001-4381.2016.11.020
10 ZHANG Y , ZHANG B Z , DUAN J P , et al. Application of metamaterial in perfect absorber[J]. Journal of Materials Engineering, 2016, 44 (11): 120- 128.
doi: 10.11868/j.issn.1001-4381.2016.11.020
11 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计[J]. 物理学报, 2015, 64 (21): 218102-1- 6.
11 HUI Y C , WANG C Q , HUANG X Z . Design and fabrication of broadband radar metamaterial absorber based on the resistor FSS[J]. Acta Phys Sin, 2015, 64 (21): 218102-1- 6.
12 郭飞, 杜红亮, 屈绍波, 等. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备[J]. 物理学报, 2015, 64 (7): 077801-1- 6.
12 GUO F , DU H L , QU S B , et al. Design and fabrication of a broadband metamaterial absorber based on a dielectric and magnetic hybrid substrate[J]. Acta Phys Sin, 2015, 64 (7): 077801-1- 6.
13 董圆圆, 黄辉, 张楚顺, 等. 叠层结构电磁超材料吸波体的特性研究[J]. 功能材料, 2015, 46 (5): 05058- 05061.
13 DONG Y Y , HUANG H , ZHANG C S , et al. Research on properties of metamaterial absorbers in multi-layer configuration[J]. Journal of Functional Materials, 2015, 46 (5): 05058- 05061.
14 高海涛, 王建江, 李泽, 等. "三明治"型超材料吸波体及其设计优化的研究现状[J]. 材料导报, 2017, 31 (2): 15- 20.
14 GAO H T , WANG J J , LI Z , et al. Research status and tendency of sandwich-structured metamaterial absorbers and its design optimization[J]. Materials Review, 2017, 31 (2): 15- 20.
15 于相龙, 周济. 智能超材料研究与进展[J]. 材料工程, 2016, 44 (7): 119- 128.
doi: 10.11868/j.issn.1001-4381.2016.07.020
15 YU X L , ZHOU J . Research advance in smart metamaterials[J]. Journal of Materials Engineering, 2016, 44 (7): 119- 128.
doi: 10.11868/j.issn.1001-4381.2016.07.020
16 XU X G , ZHOU Z G , HEI Y W , et al. Improving compression-after-impact performance of carbon-fiber composites by CNTs/thermoplastic hybrid film interlayer[J]. Composites Science and Technology, 2014, 95, 77- 80.
17 HU X L , LIU G , YU R L , et al. Monitoring phase separation and morphology of thermoplastic PEK-C/bismaleimide and its carbon fiber composites[J]. J Mater Eng, 2010, (Suppl 1): 273- 276.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[13] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[14] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[15] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn