Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 133-140    DOI: 10.11868/j.issn.1001-4381.2016.001017
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于仿生原理的几何构型及其功能性的研究进展
谭娜1,2, 邢志国2, 王海斗1,2, 王晓丽2, 金国1, 徐滨士2
1. 哈尔滨工程大学 超轻材料与表面技术教育部重点实验室, 哈尔滨 150001;
2. 陆军装甲兵学院 装备再制造国防科技重点实验室, 北京 100072
Research Progress on Geometric Texturing and Function Based on Bionic Theory
TAN Na1,2, XING Zhi-guo2, WANG Hai-dou1,2, WANG Xiao-li2, JIN Guo1, XU Bin-shi2
1. Key Laboratory of Superlight Material and Surface Technology(Ministry of Education), Harbin Engineering University, Harbin 150001, China;
2. National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(2275 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 近年来,从生物形态出发的仿生学研究已得到广泛的关注。模拟生物表面形态、分析生物因其自身形态而具备的功能,并将其应用到工程领域中已成为研究热点之一。研究基于仿生学原理的生物体几何形貌及其所具备的功能,能够优化材料表面性能,延长服役寿命,拓宽应用范围,提高材料的应用价值。本文通过分析生物体因体表几何构型而具备的超疏水性、仿生减阻性、减摩耐磨性的原理及应用领域,探究仿生织构化图案实现不同功能的机理,明确其未来着力于仿生图案的制备及机理探索的发展方向,进而对材料表面进行处理,以期具备更优异的性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭娜
邢志国
王海斗
王晓丽
金国
徐滨士
关键词 仿生学超疏水表面仿生减阻减摩耐磨    
Abstract:Biological researches have attracted wide attentions in recent years, mimicking the morphology of creatures, learning the function of morphology and applying it to the engineering area have become the research focus. Investigating the special function of bionic surface texturing based on geometric morphology can provide us ideas to optimize surface properties of materials,extend the materials service life, widen the scope of application of materials, and improve the application values of materials. Through studying on the principle and application of hydrophobicity, bionic drag reduction, antifriction and wear-resistant due to the geometric morphology, the different functions of bionic texturing were explored, the future development directions of focusing on bionic patterns preparation and mechanism exploration were clarified, and further the surface treatment on materials was carried out to prepare the materials with more superior properties.
Key wordsbionics    super-hydrophobic surface    bionic drag reduction    antifriction and wear resistance
收稿日期: 2016-08-28      出版日期: 2018-01-18
中图分类号:  TG43  
通讯作者: 王海斗(1969-),男,教授,研究方向:喷涂涂层的再制造、涂层摩擦学性能,联系地址:北京市丰台区杜家坎21号装甲兵工程学院(100072),E-mail:wanghaidou@aliyun.com     E-mail: wanghaidou@aliyun.com
引用本文:   
谭娜, 邢志国, 王海斗, 王晓丽, 金国, 徐滨士. 基于仿生原理的几何构型及其功能性的研究进展[J]. 材料工程, 2018, 46(1): 133-140.
TAN Na, XING Zhi-guo, WANG Hai-dou, WANG Xiao-li, JIN Guo, XU Bin-shi. Research Progress on Geometric Texturing and Function Based on Bionic Theory. Journal of Materials Engineering, 2018, 46(1): 133-140.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001017      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/133
[1] 李建桥,任露泉,田喜梅. 工程仿生学的新进展——推动仿生工程学的科学研究与国际交流[J]. 国际学术动态,2009(6):34-36. LI J Q,REN L Q,TIAN X M. New advances on bionic engineering-researches and international communication driving the bionic engineering[J]. International Academic Developments,2009(6):34-36.
[2] 刘博,姜鹏,李旭朝,等.鲨鱼盾鳞肋条结构的减阻仿生研究进展[J].材料导报,2008,22(7):14-17. LIU B, JIANG P, LI X Z, et al. Drag-reduction bionic research on riblet surfaces of shark skin[J] Materials Review,2008,22(7):14-17.
[3] 张占辉,王义强,叶国云,等. 仿生非光滑表面对对磨副的损伤机理研究[J]. 材料工程,2016,44(8):98-103. ZHANG Z H,WANG Y Q,YE G Y,et al. Damage mechanism in counter pairs caused by bionic non-smoothed surface[J]. Journal of Materials Engineering,2016,44(8):98-103.
[4] LLIEV D,PESHEVA N C,ILIEV S,et al. Contact angle hysteresis and meniscus corrugation on randomly heterogeneous surfaces with mesa-type defects[J]. Langmuir,2013,29:5781-5792.
[5] 傅爱红, 李春福. 超疏水表面的研究进展及制备技术[J]. 材料导报,2012,26(9):444-449. FU A H,LI C F. Preparation and development of biomimic super-hydrophobic surfaces[J]. Materials Review,2012,26(9):444-449.
[6] VINCENT J F. Biomimetics-a review[J]. Institution of Mechanical Engineers Indian Journal of Dental Sciences,2010,223(8):919-939.
[7] BARTHLOTT W,NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta,1997,202(1):1-8.
[8] GUO Z G,LIU W M. Progress in bio-mimicing of super-hydrophobic surface[J]. Progress in Chemistry,2006,18(6):721-726.
[9] KANG C M,JI J Y,ZHAO J L,et al. Facile fabrication of super-hydrophobic surface on aluminum and its effects in accelerating underwater bubble bursting[J]. Materials Science Forum,2014,789:154-156.
[10] FENG L,ZHANG Y N,XI J M,et al. Petal effect:a superhydrophobic state with high adhesive force[J]. Langmuir,2008,24(8):4114-4119.
[11] BHUSHAN B,NOSONOVSKY M. The rose petal effect and the modes of superhydrophobicity[J]. Philosophical Transactions,2010,368(1929):4713-4728.
[12] BIRO L P.Photonic nanoarchitectures of biologic origin in butterflies and beetles[J]. Materials Sciences & Engineering:B,2010,169(1/3):3-11.
[13] KERTÉSZ K,PISZTER G,JAKAB E,et al. Color change of blue butterfly wing scales in an air-vapor ambient[J]. Applied Surface Science,2013,281(1):49-53.
[14] 任露泉,李秀娟. 蜻蜓翅膀功能特性及其仿生研究进展[J]. 中国科学:技术科学,2013(4):353-367. REN L Q,LI X J. Functional characteristics of dragonfly wings and its bionic investigation progress[J]. Scientia Sinica:Technologica,2013(4):353-367.
[15] WANG N,GUO F,WU J,et al. Variable responsive wettability films via electrospinning induced by solvents[J]. Journal of Nanomaterials,2014(9):1-7.
[16] MATLI P R,ZHOU X,DU S,et al. Fabrication,characterization, and magnetic behavior of porous ZnFe2O4 hollow microspheres[J]. International Nano Letters,2014,5(1):1-7.
[17] ZANG D,LI F,GENG X,et al. Tuning the wettability of an aluminum surface via a chemically deposited fractal dendrite structure[J]. European Physical Journal E,2013,36(6):1-8.
[18] FURSTNER R,BARTHLOTT W,NEINHUIS C,et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir,2005,21(3):956-961.
[19] LATTHE S S,TERASHIMA C,NAKATA K,et al. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf[J]. Molecules,2014,19(4):4256-4283.
[20] SUNG Y H,YANG D K,CHOI H J,et al. Fabrication of superhydrophobic surfaces with nano-in-micro structures using UV-nanoimprint lithography and thermal shrinkage films[J]. Applied Surface Science,2015,349:169-173.
[21] BHUSHAN B,KOCH K,JUNGY C. Fabrication and characterization of the hierarchical structure for superhydrophobicity and self-cleaning[J]. Ultramicroscopy,2009,109(8):1029-1034.
[22] TADANAGA K,MORINAGAI J,MINAMI T. Formation of superhydrophobic-superhydrophilic pattern on flowerlike alumina thin film by the sol-gel method[J]. Journal of Sol-Gel Science and Technology,2000,19(1/3):211-214.
[23] KARTINI I,SANTOSA S J,FEBRIYANTI E,et al. Hybrid assembly of nanosol titania and dodecylamine for superhydrophobic self-cleaning glass[J]. Journal of Nanoparticle Research,2014,16(16):937-945.
[24] ZHANG X T,SATO O,FUJISHIMA A. Water ultrarepellency induced by nanocolumnar ZnO surface[J]. Langmuir,2004,20(14):6065-6067.
[25] RODRIGUES A,ALVES M C M,MORAIS J. Self-assembled nanocolumnar ZnO films chemically deposited on stainless steel with controlled morphology and thickness[J]. Materials Letters,2014,114(1):122-125.
[26] WANG Y X,CHEN S. Droplets impact on textured surfaces:mesoscopic simulation of spreading dynamics[J]. Applied Surface Science,2015,327:159-167.
[27] WANG Y,ZHU Q,TAO L. Fabrication and growth mechanism of hierarchical porous Fe3O4 hollow sub-microspheres and their magnetic properties[J]. Crystengcomm,2011,13(14):4652-4657.
[28] KANG S M,CHOI H. Active wall motions for skin-friction drag reduction[J]. Physics of Fluids,2000,12(12):3301-3304.
[29] TAY C M J,KHOO B C,CHEW Y T. Mechanics of drag reduction by shallow dimples in channel flow[J]. Physics of Fluids,2015,27(3):045105.
[30] PENG Y B,WANG G,PAN S F,et al.6005A aluminum dynamic mechanical model considering the dynamic recovery process[J]. Journal of Mechanical Engineering,2014,50(10):32-39.
[31] ZHAO D Y,HUANG Z P,WANG M J,et al. Vacuum casting replication of micro-riblets on shark skin for drag-reducing applications[J]. Journal of Materials Processing Technology,2012,212(1):198-202.
[32] BECHERT D W,BRUSE M,HAGE W,et al. Fluid mechanics of biological surfaces and their technological application[J]. Naturwissenschaften,2000,87(4):157-171.
[33] ATT W,OGAWA T. Biological aging of implant surfaces and their restoration with ultraviolet light treatment:a novel understanding of osseointegration[J]. International Journal of Oral & Maxillofacial Implants,2012,27(4):753-761.
[34] TIAN L M,REN L Q,HAN Z W,et al. Experiment about drag reduction of bionic non-smooth surface in low speed wind tunnel[J]. Journal of Bionic Engineering,2005,2(1):15-24.
[35] GU Y,ZHAO G,ZHENG J,et al. Experimental and numerical investigation on drag reduction of non-smooth bionic jet surface[J]. Ocean Engineering,2014,81(1):50-57.
[36] DOU Z L,WANG J D,CHEN D R. Bionic research on fish scales for drag reduction[J]. Journal of Bionic Engineering,2012,9(4):457-464.
[37] FROHNAPFEL B,JOVANOVIC J,DELGADO A. Experimental investigations of turbulent drag reduction by surface-embedded grooves[J]. Journal of Fluid Mechanics,2007,590:107-116.
[38] MALSHE A,RAJURKARK,SAMANT A,et al. Bio-inspired functional surfaces for advanced applications[J]. CIRP Annals-Manufacturing Technology,2013,62(2):607-628.
[39] BHUSHAN B. Biomimetics:lessons from nature-an overview[J]. Philosophical Transactions,2009,367(1893):1445-1486.
[40] PENG Y B,WANG G,ZHU T X,et al. Dynamic mechanical behaviors of 6082-T6 aluminum alloy[J]. Advances in Mechanical Engineering,2013,5(12):878016.
[41] TIAN L M,REN L Q,LIU Q P,et al. The mechanism of drag reduction around bodies of revolution using bionic non-smooth surfaces[J]. Journal of Bionics Engineering,2007,4(7):109-116.
[42] JEZIORSKI A. Airbus wins first order for ‘Sharklet’ A321[J]. Asian Aviation Magazine,2010,8(5):6.
[43] CHIN Y W,BALUNAS M J,CHAI H B,et al. Drug discovery from natural sources[J]. Aaps Journal,2006,8(2):E239-E253.
[44] CHO M,CHOI H J. Optimization of surface texturing for contact between steel and ultrahigh molecular weight polyethylene under boundary lubrication[J]. Tribology Letters,2014,56(3):409-422.
[45] 厉淦,沈明学,孟祥铠,等. 316L不锈钢沟槽型表面微织构减摩特性实验研究[J]. 功能材料,2015,46(2):2033-2037. LI G,SHEN M X,MENG X K,et al. An experimental study on tribological properties of groove-textured surfaces of 316L stainless steel[J]. Journal of Functional Materials,2015,46(2):2033-2037.
[46] 于海武,邓海顺,黄巍,等. 微凹坑相对位置变化对表面减摩性能的影响[J]. 中国矿业大学学报,2012,40(6):943-948. YU H W,DENG H S,HUANG W,et al. Effect of micro-dimple arrangements on trobological performance of sliding surfaces[J]. Journal of China University of Mining & Technology,2012,40(6):943-948.
[47] RAMESH A,AKRAM W,MISHRA S P,et al. Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication[J]. Tribology International,2013,57:170-176.
[48] BATHE R,KRISHNA V S,NIKUMB S K,et al. Laser surface texturing of gray cast iron for improving tribological behavior[J]. Applied Physics A,2014,117(1):117-123.
[49] TEKER T,KARATAS S,YILMAZ S O. Microstructure and wear properties of FeCrC, FeW and FeTi modified iron based alloy coating deposited by PTA process on AlSi 430 steel[J]. Archives of Metallurgy & Materials,2014,59(3):T507-T513.
[50] CHEN L,ZHOU H,ZHAO Y,et al. Abrasive particle wear behaviors of several die steels with non-smooth surfaces[J]. Journal of Materials Processing Technology,2007,190(1):211-216.
[51] DOBRZANSKI L A,DRYGALA A. Surface texturing of multicrystalline silicon solar cells[J]. Journal of Achievements in Materials and Manufacturing Engineering,2008,31(1):144-147.
[52] 邵天敏,耿哲. 图形化固体薄膜技术及其摩擦学性能的研究进展[J]. 中国表面工程,2015,28(2):1-26. SHAO T M,GENG Z. Research progress in patterned thin solid film techniques and their tribological performance[J]. China Surface Engineering,2015,28(2):1-26.
[53] LAMRAOUI A,COSTIL S,LANGLADE C,et al. Laser surface texturing (LST) treatment before thermal spraying:a new process to improve the substrate-coating adherence[J]. Surface & Coatings Technology,2010,205(7):S164-S167.
[54] KROMER R,COSTIL S,CORMIER J,et al. Laser surface patterning to enhance adhesion of plasma sprayed coatings[J]. Surface & Coatings Technology,2015,278:171-182.
[1] 徐文骥, 宋金龙, 孙晶, 窦庆乐. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011, 0(5): 93-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn