Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 142-148    DOI: 10.11868/j.issn.1001-4381.2017.000006
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
非均相固化体系对复合材料树脂微观力学均匀性的影响
郭妙才1,2, 洪旭辉1,2, 李亚锋1,2
1. 中航工业复合材料技术中心, 北京 101300;
2. 中国航发 北京航空材料研究院 先进复合材料重点实验室, 北京 100095
Effect of Heterogeneous Resin Curing Agent on Micro-mechanical Uniformity of Resin Matrix of Composites
GUO Miao-cai1,2, HONG Xu-hui1,2, LI Ya-feng1,2
1. AVIC Composite Technology Center, Beijing 101300, China;
2. National Key Laboratory of Advanced Composites, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(3577 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用热熔法制备预浸料涉及熔融树脂对纤维层的渗透,对于固化体系为非均相的环氧树脂基体,制备大厚度预浸料可能会受到固化剂分布不均的影响。利用纳米力学方法分别研究采用小厚度玻璃纤维预浸料制备的复合材料和通过树脂真空吸注工艺制备的玻璃纤维复合材料的内部树脂的微观力学均匀性。结果表明:由小厚度预浸料制备的复合材料,其内部树脂各区域具有较好的微观力学均匀性,各区域树脂的纳米硬度和耐磨损性基本相同,各铺层中心和边缘接近;通过树脂真空吸注工艺制备的复合材料则表现出明显的层状分布,固化剂和促进剂颗粒在纤维层外部富集,纤维层外层的树脂具有较高的纳米硬度和耐磨损性,而在纤维层内0.4mm深后的树脂纳米硬度下降,耐磨损性下降,纤维层内部的树脂纳米硬度很低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭妙才
洪旭辉
李亚锋
关键词 潜伏型固化剂环氧树脂复合材料纳米压痕微观力学均匀性    
Abstract:Preparation of prepregs by hot melt method is generally involved the infiltration of resin. For the epoxy resin with a heterogeneous curing system, the preparation of large thickness prepregs may be affected by the uneven distribution of curing agent. A nanomechanical method was used to study the micro-mechanical uniformity of the resin matrix of the composites prepared by thin thickness glass fibre prepregs and the glass fibre reinforced composites prepared by resin vacuum suction technology. The results show that to the composites prepared by thin thickness prepregs, the resin exhibits good micro-mechanical uniformity, the nano-hardness and wear properties of the resin at the different regions of the composite cross-section have a good uniformity. The composites prepared by resin vacuum suction method exhibits obvious layered distribution, the particles of the curing agent and accelerator are enriched at the outer surface of the fiber layer. The resin at the outer layer of the fibre layer has higher nano hardness and wear resistance, while to the resin about 0.4mm inside the fiber layer, its hardness goes down, a very low nano hardness of the resin deeply inside the fiber layer is observed.
Key wordslatent curing agent    epoxy resin    composites    nano-indentation    micro-mechanical uniformity
收稿日期: 2016-12-31      出版日期: 2018-10-17
中图分类号:  O631.2  
通讯作者: 郭妙才(1980-),男,高级工程师,博士,复合材料专业,联系地址:北京市81信箱3分箱(100095),E-mail:guo_miaocai@sina.cn     E-mail: guo_miaocai@sina.cn
引用本文:   
郭妙才, 洪旭辉, 李亚锋. 非均相固化体系对复合材料树脂微观力学均匀性的影响[J]. 材料工程, 2018, 46(10): 142-148.
GUO Miao-cai, HONG Xu-hui, LI Ya-feng. Effect of Heterogeneous Resin Curing Agent on Micro-mechanical Uniformity of Resin Matrix of Composites. Journal of Materials Engineering, 2018, 46(10): 142-148.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000006      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/142
[1] GARG M, SHARMA S, MEHTA R. Pristine and amino functionalized carbon nanotubes reinforced glass fiber epoxy composites[J]. Composites Part A, 2015, 76:92-101.
[2] PETERSEN M R, CHEN A, ROLL M, et al. Mechanical properties of fire-retardant glass fiber-reinforced polymer materials with alumina tri-hydrate filler[J]. Composites Part B, 2015, 78:109-121.
[3] GAO X, GILLESPIE JR J W, JENSEN R E, et al. Effect of fiber surface texture on the mechanical properties of glass fiber reinforced epoxy composite[J]. Composites Part A, 2015, 74:10-17.
[4] 郑亚萍, 陈伟, 李江红, 等. RTM和预浸料共固化树脂体系界面层特性[J]. 复合材料学报, 2013, 30(3):35-38. ZHENG Y P, CHEN W, LI J H, et al. Interface properties of RTM and prepreg process co-curing system[J]. Acta Materiae Compositae Sinica, 2013, 30(3):35-38.
[5] 孟季茹, 梁国正, 何洋, 等. 聚苯醚改性环氧树脂基覆铜板的研制[J]. 复合材料学报, 2003, 20(1):74-78. MENG J R, LIANG G Z, HE Y, et al. Preparation of the copper clad laminate based on modified epoxy with poly(2,6-dimethyl-1,4-phenylene ether)[J]. Acta Materiae Compositae Sinica, 2003, 20(1):74-78.
[6] JACKSON M L, LOVE B J. Dicyandiamide precipitation in epoxy solutions and latex dispersions:threshold concentration analysis using a two-stage drying model[J]. Polymer, 2004, 45:7229-7238.
[7] 陈绍杰, 朱珊. 大丝束碳纤维应用研究[J]. 飞机设计, 2004(3):22-25. CHEN S J, ZHU S. Application study of large-tow carbon fiber[J]. Aircraft Design, 2004(3):22-25.
[8] VANLANDINGHAM M R, VILLARRUBIA J S, GUTHRIE W F, et al. Nanoindentation of polymers:an overview[J]. Macromolecular Symposia, 2001, 167:15-43.
[9] MOLAZEMHOSSEINI A, TOURANI H, NAIMI-JAMAL M R, et al. Nanoindentation and nano-scratching responses of PEEK based hybrid composites reinforced with short carbon fibers and nano-silica[J]. Polymer Testing, 2013, 32:525-534.
[10] CHEN J J. On the determination of coating toughness during nanoindentation[J]. Surface and Coatings Technology, 2012, 206:3064-3068.
[11] YEAGER J D, RAMOS K J, SINGH S, et al. Nanoindentation of explosive polymer composites to simulate deformation and failure[J]. Materials Science and Technology, 2012, 28:1147-1155.
[12] GUO Y, LI Y. Quasi-static/dynamic response of SiO2-epoxy nanocomposites[J]. Materials Science and Engineering:A, 2007, 458:330-335.
[13] LEE S H, WANG S Q, PHARR G M, et al. Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis[J]. Composites Part A, 2007, 38:1517-1524.
[14] LIU X D, ZHAO C H, SUDO A, et al. Storage stability and curing behavior of epoxy-dicyandiamide systems with carbonyldiimida-zole-Cu(Ⅱ) complexes as the accelerator[J]. Journal of Polymer Science Part A, 2013, 51:3470-3476.
[1] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[2] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[3] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[4] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[5] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[6] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[7] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[8] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[9] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[10] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[13] 贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
[14] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
[15] 张博, 付琪智, 林森, 陈廷芳, 孙仕勇, 蒋卉. 炭化纳米Co3O4/硅藻土复合材料制备及其性能[J]. 材料工程, 2019, 47(2): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn