Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 77-81    DOI: 10.11868/j.issn.1001-4381.2017.000671
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于有源超材料的可调超薄雷达吸波体研究
黄金国1,2, 郭宇3, 赵治亚2,4, 李雪2,4, 邢明军2,4, 谢镇坤1
1. 深圳光启高等理工研究院, 广东 深圳 518000;
2. 深圳光启尖端技术有限责任公司, 广东 深圳 518000;
3. 中航工业沈阳飞机设计研究所, 沈阳 110035;
4. 超材料电磁调制技术国家重点实验室, 广东 深圳 518000
Investigation on tunable ultra-thin radar absorber based on active metamaterial
HUANG Jin-guo1,2, GUO Yu3, ZHAO Zhi-ya2,4, LI Xue2,4, XING Ming-jun2,4, XIE Zhen-kun1
1. Shenzhen Kuang-Chi Institute of Advanced Technology, Shenzhen 518000, Guangdong, China;
2. Shenzhen Kuang-Chi Cutting-edge Technology Co., Ltd., Shenzhen 518000, Guangdong, China;
3. AVIC Shenyang Aircraft Design Institute, Shenyang 110035, China;
4. State Key Laboratory of Metamaterial Electromagnetic Modulation Technology, Shenzhen 518000, Guangdong, China
全文: PDF(2697 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在超材料结构中引入电阻和有源变容二极管,通过合理设计微结构型式以及微结构之间的连线方式,实现吸波频带的动态可调,研究电阻、电容和入射波极化方向对吸波特性的影响。结果表明:通过改变外加电压调整超材料的吸收频段,在3.7倍频带范围内实现吸波频段的主动自调节;吸波体的总厚度仅为波长的1/181,相比于传统吸波材料,在同等吸波性能条件下,表现出了优异的超薄特性;TE和TM极化电磁波表现出相同的吸波效果,即吸波特性对入射波的极化方向不敏感。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄金国
郭宇
赵治亚
李雪
邢明军
谢镇坤
关键词 吸波材料超材料超薄可调    
Abstract:A sort of state-of-the-art metamaterial was introduced to serve as an active ultra-thin RAM. The metamaterial consisted of resistors, varactor diodes and micro-structure array. The effect of resistor, capacitor and electromagnetic polarization on the absorbing properties was investigated in detail. The results indicate that its absorption band can be regulated in 3.7 times frequency-band by actively changing the external voltage. The total thickness of the metamaterial RAM is only 1/181 of the wavelength. Compared with the traditional absorbing materials, the metamaterial RAM shows excellent ultra thin feature under the same wave absorbing performance. In addition, for TE and TM polarized electromagnetic wave, the metamaterial RAM exhibits the same wave absorbing property, i.e., its absorbing property is insensitive to the polarization direction of incident wave.
Key wordsradar absorbing material(RAM)    metamaterial    ultra-thin    tunable
收稿日期: 2017-05-27      出版日期: 2019-06-17
中图分类号:  TN973.3+2  
通讯作者: 谢镇坤(1988-),男,高级工程师,博士,研究方向为雷达吸波材料,联系地址:广东省深圳市南山区高新中一道9号软件大厦二楼前台(518000),E-mail:zkxie0330@163.com     E-mail: zkxie0330@163.com
引用本文:   
黄金国, 郭宇, 赵治亚, 李雪, 邢明军, 谢镇坤. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47(6): 77-81.
HUANG Jin-guo, GUO Yu, ZHAO Zhi-ya, LI Xue, XING Ming-jun, XIE Zhen-kun. Investigation on tunable ultra-thin radar absorber based on active metamaterial. Journal of Materials Engineering, 2019, 47(6): 77-81.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000671      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/77
[1] 孙昌. 低频微波吸收剂的优选、制备及性能研究[D]. 济南:山东大学,2007. SUN C. Synthesis and microwave absorbing properties of low frequency absorber[D]. Jinan:Shandong University,2007.
[2] 解帅,冀志江,杨洋,等. 电磁波吸收建筑材料的应用研究进展[J]. 材料导报:综述篇,2016,30(13):63-70. XIE S,JI Z J,YANG Y,et al. Recent progress in electromagnetic wave absorbing building materials[J]. Materials Review:Review Papers,2016,30(13):63-70.
[3] 哈恩华,黄大庆,丁鹤雁. 新型轻质雷达吸波材料的应用研究及进展[J]. 材料工程,2006(3):55-59. HA E H,HUANG D Q, DING H Y. Application research and prospects of new and light mass radar absorbing materials[J]. Journal of Materials Engineering,2006(3):55-59.
[4] 礼嵩明,蒋诗才,望咏林,等. "超材料"结构吸波复合材料技术研究[J]. 材料工程,2017,45(11):10-14. LI S M,JIANG S C,WANG Y L,et al. Study on "Metamaterial" structural absorbing composite technology[J]. Journal of Mater-ials Engineering,2017,45(11):10-14.
[5] 周卓辉,黄大庆,刘晓来,等. 超材料在宽频微波衰减吸收材料中的应用研究进展[J]. 材料工程,2014(5):91-96. ZHOU Z H,HUANG D Q,LIU X L,et al. Application developments of metamaterials in wideband microwave absorbing materials[J]. Journal of Materials Engineering,2014(5):91-96.
[6] TANG W X,MEI Z L,CUI T J. Theory,experiment and applications of metamaterials[J]. Science China Physics, Mechanics & Astronomy,2015,58(12):127001.
[7] ZHANG Y,WU J,LIANG L,et al. Effect of loss and coupling on the resonance of metamaterial:an equivalent circuit approach[J]. Science China Information Sciences,2014,57(12):1-8.
[8] 张磊,卓林蓉,汤桂平,等. 增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报,2018,38(3):10-19. ZHANG L,ZHUO L R,TANG G P,et al. Additive manufacture of metamaterials:a review[J]. Journal of Aeronautical Materials,2018,38(3):10-19.
[9] GAO Q,YIN Y,YAN D B,et al. Application of metamaterials to ultra-thin radar-absorbing material design[J]. Electronics Lett-ers,2005,41(17):936-937.
[10] MATTIUCCI N,BLOEMER M J,AKÖZBEK N,et al.Impedance matched thin metamaterials make metals absorbing[J]. Scientific Reports,2013,3(11):3203.
[11] QUAN B,LIANG X,XU G,et al. Permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation[J]. New Journal of Chemistry,2017,41(3):1259-1266.
[12] ROZANOV K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas & Propagation,2000,48(8):1230-1234.
[13] 于相龙,周济. 智能超材料研究与进展[J]. 材料工程,2016,44(7):119-128. YU X L, ZHOU J. Research advance in smart metamaterials[J]. Journal of Materials Engineering,2016,44(7):119-128.
[14] TENNANT A,CHAMBERS B. Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J]. Smart Materials & Structures,2004,13(1):122-125.
[15] XU X,JIANG J,MIAO L,et al. Design of tunable metamaterial absorbers based on PIN diodes[J]. IEICE Electronics Express,2012,9(17):1408-1413.
[16] 戚开南,汪勇峰,侯新宇,等. 有源可调微波吸收体分析与优化[J]. 北京航空航天大学学报,2015,41(10):1853-1858. QI K N,WANG Y F,HOU X Y,et al. Analysis and optimization of active tunable microwave absorber[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(10):1853-1858.
[17] XU W,HE Y,KONG P,et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications[J]. Journal of Applied Physics,2015,118(18):184903.
[18] HU F,QIAN Y,LI Z,et al. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J]. Journal of Optics,2013,15(5):5101.
[19] 王连胜,夏冬艳,吕振肃,等. 电控可调谐双波段超材料吸波体分析[J]. 重庆大学学报,2014,37(8):76-82. WANG L S,XIA D Y,LV Z S,et al. Analysis on electrically controlled tunable dual-band metamaterials absorber[J]. Journal of Chongqing University,2014,37(8):76-82.
[20] LV H,GUO Y,ZHAO Y,et al. Achieving tunable electromagnetic absorber via graphene/carbon sphere composites[J]. Carbon,2016,110:130-137.
[21] D'ALOIA A G,D'AMORE M,SARTO M S. Adaptive broadband radar absorber based on tunable graphene[J]. IEEE Transactions on Antennas and Propagation,2016,64(6):2527-2531.
[22] FANTE R L,McCORMACK M T. Reflection properties of the Salisbury screen[J]. IEEE Transactions on Antennas and Propagation,1988,36(10):1443-1454.
[1] 刘晓明, 任志宇, 陈陆平, 李国建, 王强, 周济. 红外隐身超材料[J]. 材料工程, 2020, 48(6): 1-11.
[2] 傅晓建, 石磊, 崔铁军. 太赫兹超材料及其成像应用研究进展[J]. 材料工程, 2020, 48(6): 12-22.
[3] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[4] 崔燚, 魏恒勇, 杨静凯, 朱彬, 卜景龙, 梁波. 氮化物吸波材料研究进展[J]. 材料工程, 2020, 48(6): 82-90.
[5] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
[6] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[7] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58.
[8] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[9] 葛超群, 汪刘应, 刘顾. 碳基/羰基铁复合吸波材料的研究进展[J]. 材料工程, 2019, 47(12): 43-54.
[10] 张雪霏, 周金堂, 姚正军, 蔡海硕, 魏波. CIP/GF/CF/EP吸波复合材料的制备及力学性能[J]. 材料工程, 2019, 47(10): 141-147.
[11] 李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
[12] 高海涛, 王建江, 李泽. 基于超材料设计的钡铁氧体吸波涂层研究[J]. 材料工程, 2019, 47(1): 70-76.
[13] 于丽新, 兰晓琳, 邵枫, 刘艇安, 张诗琪, 王志江. MWCNT/FeNi复合纳米线制备及其雷达微波和工频电磁波吸收性能[J]. 材料工程, 2018, 46(8): 64-70.
[14] 梁瑞洋, 杨平, 毛卫民. 冷轧压下率及初始高斯晶粒取向度对超薄取向硅钢织构演变与磁性能的影响[J]. 材料工程, 2017, 45(6): 87-96.
[15] 礼嵩明, 蒋诗才, 望咏林, 顾涧潇, 邢丽英. “超材料”结构吸波复合材料技术研究[J]. 材料工程, 2017, 45(11): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn