Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (5): 127-135    DOI: 10.11868/j.issn.1001-4381.2019.000195
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能
易振华, 冉丽萍, 易茂中()
中南大学 粉末冶金研究院 粉末冶金国家重点实验室, 长沙 410083
Microstructure and properties of C/C composites brazed with Ni-Cr-P pasty filler metal
Zhen-hua YI, Li-ping RAN, Mao-zhong YI()
State Key Laboratory for Powder Metallurgy, Institute of Powder Metallurgy, Central South University, Changsha 410083, China
全文: PDF(6390 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

用真空熔炼、惰性气体雾化法制备Ni-Cr-P金属粉末,再加入有机黏结剂高速搅拌,制备Ni14Cr10P膏状活性钎料。用制备好的焊膏真空钎焊C/C复合材料,测试钎焊接头的剪切强度,通过OM,SEM,EDS,XRD等对钎焊接头界面组织结构进行分析。结果表明:在钎焊温度1000℃、保温时间0.5 h条件下,获得的接头剪切强度达到28.6 MPa,然后随着钎焊温度上升或保温时间延长,钎焊接头强度下降;通过界面组织结构分析发现焊膏可以增加钎料层与C/C复合材料表面的接触面积,有利于堵塞C/C复合材料表面的孔隙。焊后在界面处形成了交错分布的Cr碳化物相缓冲层,使得界面呈现热膨胀系数梯度增加的结构,有助于缓解热失配,提高C/C复合材料钎焊接头强度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易振华
冉丽萍
易茂中
关键词 活性钎料焊膏C/C复合材料钎焊剪切强度界面组织结构    
Abstract

The Ni-Cr-P metal powder was prepared by vacuum melting and inert gas atomization method, and then an organic binder was added and stirred at high speed to prepare a Ni14Cr10P paste-like filler metal. The prepared pasty filler metal was used to braze the C/C composites in a vacuum furnace. Then the shear strength of the brazed joint was tested. The interface structure of the brazed joint was analyzed by OM, SEM, EDS and XRD. The results show that the shear strength of the joint obtained at the brazing temperature of 1000℃ and the holding time of 0.5 h reaches 28.6 MPa, and then the strength of the brazed joint is decreased with the increase of the brazing temperature or the holding time. It is found that the contact area between the brazing layer and the surface of the C/C composites is increased by the pasty brazing filler metal, which is favorable for blocking the pores on the surface of the C/C composites. A staggered distribution of Cr carbide phase buffer layer is formed at the interface, so that the interface exhibits a structure with an increased thermal expansion coefficient gradient, which helps to alleviate the thermal mismatch and improve the strength of the brazed joint.

Key wordsactive brazing filler    pasty filler    C/C composites brazing    shear strength    interface stru-cture
收稿日期: 2019-03-06      出版日期: 2020-05-28
中图分类号:  TG454  
通讯作者: 易茂中     E-mail: yimaozhong@126.com
作者简介: 易茂中(1962-), 男, 教授, 博导, 研究方向为C/C复合材料、涂层材料等, 联系地址:湖南省长沙市岳麓区麓山南路932号中南大学粉末冶金研究院(410083), E-mail:yimaozhong@126.com
引用本文:   
易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
Zhen-hua YI, Li-ping RAN, Mao-zhong YI. Microstructure and properties of C/C composites brazed with Ni-Cr-P pasty filler metal. Journal of Materials Engineering, 2020, 48(5): 127-135.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000195      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/127
Fig.1  C/C复合材料坯体装配示意图(a)及剪切强度测试用模具示意图(b)
Fig.2  Ni-Cr-P焊膏的TG与DTA曲线
Fig.3  钎焊温度(a)和保温时间(b)对接头剪切强度的影响
Fig.4  钎焊温度1000 ℃,保温0.5 h条件下C/C复合材料钎焊接头形貌
(a)OM;(b)SEM
Fig.5  1000 ℃,0.5 h钎焊条件下Ni14Cr10P钎焊接头的微观形貌
(a)接头组织;(b)界面区域放大图像;(c)钎焊层中间区域放大图像
Fig.6  Ni14Cr10P钎焊C/C复合材料接头XRD图谱
Region Ni Cr P C
1 1.28 62.50 0.21 36.01
2 67.94 1.26 19.67 11.13
3 83.57 7.53 1.08 7.82
Table 1  钎焊接头界面处组织的EDS分析结果(原子分数/%)
Fig.7  不同钎焊温度,0.5 h保温时间接头界面处Cr3C2厚度变化
(a)950 ℃;(b)1100 ℃;(c)1200 ℃
Fig.8  钎焊温度1000 ℃,保温时间1 h(a)和2 h(b)条件下Ni14Cr10P钎焊接头形貌
Fig.9  1000 ℃,0.5 h钎焊条件下Ni14Cr10P钎焊接头的断裂面形貌和断裂路径
(a)剪切断裂面宏观形貌;(b)区域Ⅰ放大图像;(c)区域Ⅱ放大图像;(d)断裂路径
Fig.10  1200 ℃,0.5 h钎焊条件下Ni14Cr10P钎焊接头的断裂面形貌和断裂路径
(a)剪切断裂面宏观形貌;(b)区域Ⅰ放大图像;(c)区域Ⅱ放大图像;(d)断裂路径
Region Ni Cr P C
Area A 14.76 26.13 3.49 55.62
Spot B 4.58 35.81 1.25 58.36
Spot C 15.41 1.27 4.23 79.09
Table 2  1000 ℃和1200 ℃钎焊温度下Ni14Cr10P钎焊接头断口的能谱结果(原子分数/%)
Fig.11  1000 ℃,0.5 h钎焊条件Ni14Cr10P钎焊的C/C复合材料接头剪切断口形貌
Fig.12  1000 ℃,2 h钎焊条件Ni14Cr10P钎焊的C/C复合材料接头剪切断口形貌
Material Cr3C2 Ni3P Ni(s, s) C/C
CTE/(10-6K-1) 10.3 16 12.0-16.0 2.0
Table 3  C/C复合材料钎焊接头中各物质的热膨胀系数
1 HAN W , LIU M , DENG C M , et al. Ablation resistance of APS sprayed mullite/ZrB2-MoSi2 coating for carbon/carbon composites[J]. Rare Metal Materials and Engineering, 2018, 47 (4): 1043- 1048.
doi: 10.1016/S1875-5372(18)30117-6
2 WU S , LIU Y , GE Y , et al. Structural transformation of carbon/carbon composites for aircraft brake pairs in the braking process[J]. Tribology International, 2016, 102, 497- 506.
doi: 10.1016/j.triboint.2016.06.018
3 刘皓, 李克智. 两种双基体C/C复合材料的微观结构与力学性能[J]. 材料工程, 2017, 45 (8): 38- 42.
3 LIU H , LI K Z . Microstructure and mechanical properties of two kind of dual-matrix C/C composites[J]. Journal of Materials Engineering, 2017, 45 (8): 38- 42.
4 郭晨, 孙润军, 王剑锋. 树脂补增密前后C/C复合材料在不同制动压力下的摩擦学性能[J]. 固体火箭技术, 2018, 41 (4): 514- 519.
4 GUO C , SUN R J , WANG J F . Tribological properties of carbon/carbon composites without and with resin post-densification under different braking pressure[J]. Journal of Solid Rocket Technology, 2018, 41 (4): 514- 519.
5 王杰, 李克智, 郭领军, 等. 炭布叠层穿刺C/C复合材料螺栓连接件微观组织和力学性能[J]. 固体火箭技术, 2012, 35 (2): 248- 252.
doi: 10.3969/j.issn.1006-2793.2012.02.022
5 WANG J , LI K Z , GUO L J , et al. Microstructure and mechanical properties of C/C composite bolts[J]. Journal of Solid Rocket Technology, 2012, 35 (2): 248- 252.
doi: 10.3969/j.issn.1006-2793.2012.02.022
6 张启运, 庄鸿寿.钎焊手册-第3版[M].北京: 机械工业出版社, 2018.
6 ZHANG Q Y, ZHUANG H S. Brazing manual-3rd edition[M]. Beijing: Mechanical Industry Press, 2018.
7 ZHOU Y H , LIU D , SONG X G , et al. Characterization of carbon/carbon composite/Ti6Al4V joints brazed with graphene nanosheets strengthened AgCuTi filler[J]. Ceramics International, 2017, 43 (18): 16600- 16610.
doi: 10.1016/j.ceramint.2017.09.049
8 ALI A S , ZHOU Y N , WEN Z J . Dissimilar joining of carbon/carbon composites to Ti6Al4V using reactive resistance spot welding[J]. Journal of Alloys and Compounds, 2019, 72 (25): 418- 428.
9 马文利, 毛唯, 李晓红, 等. 采用银基活性钎料钎焊碳/碳复合材料[J]. 材料工程, 2002, (1): 9- 11.
9 MA W L , MAO W , LI X H , et al. Brazing of carbon/carbon composites using silver-based active solder[J]. Journal of Materials Engineering, 2002, (1): 9- 11.
10 SINGH M , SHPARGEL T P , MORSCHER G N , et al. Active metal brazing and characterization of brazed joints in titanium to carbon/carbon composites[J]. Materials Science & Engineering:A, 2005, 412 (1/2): 123- 128.
11 KURUMADA A , OKU T , IMAMURA Y , et al. The thermal shock resistance of a joining material of C/C composite and copper[J]. Journal of Nuclear Materials, 1998, 258/263 (608): 821- 827.
12 孙凤莲, 冯吉才, 刘会杰, 等. Ag-Cu-Ti钎料中Ti元素在金刚石界面的特征[J]. 中国有色金属学报, 2001, 11 (1): 103- 106.
doi: 10.3321/j.issn:1004-0609.2001.01.023
12 SUN F L , FENG J C , LIU H J , et al. Characteristics of Ti element in diamond interface in Ag-Cu-Ti solder[J]. The Chinese Journal of Nonferrous Metals, 2001, 11 (1): 103- 106.
doi: 10.3321/j.issn:1004-0609.2001.01.023
13 SHEN Y X , LI Z L , HAO C Y , et al. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer[J]. Journal of the European Ceramic Society, 2012, (32): 1769- 1774.
14 YANG Z W , WANG C L , HAN Y , et al. Design of reinforced interfacial structure in brazed joints of C/C composites and Nb by pre-oxidation surface treatment combined with in situ growth of CNTs[J]. Carbon, 2019, (143): 494- 506.
15 GUO W , ZHANG H Q , YUAN W Q , et al. The microstructure and mechanical properties of C/C composite/Ti3Al alloy brazed joint with graphene nanoplatelet strengthened Ag-Cu-Ti filler[J]. Ceramics International, 2019, (45): 8783- 8789.
16 HE Z J , LI C , QI J L , et al. Pre-infiltration and brazing behaviors of Cf/C composites with high temperature Ti-Si eutectic alloy[J]. Carbon, 2018, (140): 57- 67.
17 SMALL M , RYBA E . Calculation and evaluation of the Gibbs energies of formation of Cr3C2, Cr7C3, and Cr23C6[J]. Metallurgical Transactions A, 1981, 12 (8): 1389- 1396.
doi: 10.1007/BF02643683
18 范晓嫚, 徐流杰. 金属材料强化机理与模型综述[J]. 铸造技术, 2017, 38 (12): 2796- 2798.
18 FAN X M , XU L J . Review on strengthening mechanisms and models of metal materials[J]. Foundry Technology, 2017, 38 (12): 2796- 2798.
19 LI W , CHEN B , XIONG Y , et al. Joining of Cf/SiBCN composite with two Ni-based brazing fillers and interfacial reactions[J]. Journal of Materials Science & Technology, 2017, (5): 487- 491.
[1] 刘广柱, 岳迪, 康宇, 谢宏宇, 何定金. 纳米Cr颗粒对Sn-Zn-Bi-In/Cu钎焊焊点性能的影响[J]. 材料工程, 2021, 49(11): 163-170.
[2] 蔡颖军, 王刚, 檀财旺, 王秒, 赵禹. AgCu/泡沫Cu/AgCu复合钎料对ZrB2-SiC/Inconel 600合金钎焊接头组织与性能的影响[J]. 材料工程, 2021, 49(10): 72-81.
[3] 何烨, 肖建文, 姚烛威, 符应飘, 徐樑华, 曹维宇. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47(2): 146-152.
[4] 乔月月, 袁剑民, 费又庆. 微滴包埋拉出法测定复合材料界面剪切强度的影响因素分析[J]. 材料工程, 2016, 44(7): 88-92.
[5] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[6] 秦优琼, 于治水. 钎焊工艺参数对C/C复合材料/Cu/Mo/TC4 钎焊接头微观组织的影响[J]. 材料工程, 2012, 0(8): 78-82.
[7] 闫剑锋, 邹贵生, 李健, 吴爱萍. 纳米银焊膏的烧结性能及其用于铜连接的研究[J]. 材料工程, 2010, 0(10): 5-8.
[8] 陈列, 熊峻江, 程泽林. 复合材料单搭接头的剪切强度对比实验研究[J]. 材料工程, 2009, 0(11): 31-35.
[9] 汪应玲, 李红, 栗卓新, 冯吉才. TiNi形状记忆合金与不锈钢瞬间液相扩散焊工艺研究[J]. 材料工程, 2008, 0(9): 48-51,55.
[10] 梁海, 毛唯, 孙计生. K465铸造高温合金高温钎焊接头的显微组织[J]. 材料工程, 2005, 0(9): 7-10,15.
[11] 所俊, 陈朝辉, 韩卫敏, 郑文伟. 工艺参数对先驱体硅树脂高温连接陶瓷材料的影响[J]. 材料工程, 2005, 0(4): 21-25.
[12] 王成国, 王瑞华. 高聚物夹层材料对层压减振复合钢板拉伸剪切强度的影响[J]. 材料工程, 2003, 0(1): 14-16,26.
[13] 王继刚, 郭全贵, 刘朗, 宋进仁. 硅改性酚醛树脂高温粘结部件的粘接强度及导电性能[J]. 材料工程, 2000, 0(8): 15-17.
[14] 马恒怡, 黄玉东, 张志谦. 碳纤维γ射线辐照处理对其复合材料界面性能的影响[J]. 材料工程, 2000, 0(4): 26-29,33.
[15] 罗春荣, 李焱, 赵晓鹏, 陈儒. 复合颗粒电流变液的制备及其性能[J]. 材料工程, 1999, 0(5): 36-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn