|
|
Experimental and modeling investigation on compression springback property of mullite fiber reinforced silica aerogel composites |
Shuangqi LYU1, Jia HUANG2, Yantao SUN3, Yaoming FU1, Xiaoguang YANG4, Duoqi SHI4,*( ) |
1 Aviation Engineering College, Civil Aviation Flight University of China, Guanghan 618307, Sichuan, China 2 School of Aeronautics and Astronautics, Central South University, Changsha 410083, China 3 Beijing Aeronautical Engineering Technical Research Center, Beijing 100076, China 4 School of Energy and Power Engineering, Beihang University, Beijing 102206, China |
|
|
Abstract Uniaxial compression tests were carried out on mullite fiber reinforced silica aerogel composites in the out-of-plane direction. Influences of different ultimate strains and thermal exposure temperatures on the compression springback behavior and deformation recovery capability were investigated. Internal mechanisms based on the microstructure morphology changes were explained. Phenomenological mechanical models were established respectively for the deformation behavior in the loading and unloading stages. The results show that the compression springback behavior of mullite fiber reinforced silica aerogel composites exhibits nonlinear characteristics. The greater the ultimate strain, the worse the deformation recovery capability. High temperature thermal exposure pre-treatment has an effect on the compression springback property, the higher the thermal exposure temperature, the worse the deformation recovery capability. The aggregation of matrix particle-cluster structure and the formation and collapse of the large size holes are main causes. The phenomenological mechanical model can be used to describe the stress-strain curve of the composites during loading and unloading. The fitting results are in good agreement with the experimental data.
|
Received: 22 April 2021
Published: 18 July 2022
|
|
Corresponding Authors:
Duoqi SHI
E-mail: shdq@buaa.edu.cn
|
|
|
|
|
Random distribution in the in-plane direction of reinforcing fibers in aerogel matrix
|
|
Microstructures of mullite fiber reinforced silica aerogel composites (a)mullite fibers and aerogel matrix in the in-plane direction; (b)particles and clusters in silica aerogel matrix
|
|
Diagram of out-of-plane compression sample for mullite fiber reinforced silica aerogel composites
|
|
Typical out-of-plane compression stress-strain curves of fiber reinforced aerogel composites
|
|
Out-of-plane compression stress-strain curves of mullite fiber reinforced silica aerogel composites
|
|
Microstructure of mullite fiber reinforced silica aerogel composites after compression with 30% strain
|
|
Deformation recovery ability with different ultimate strains of mullite fiber reinforced silica aerogel composites
|
|
Out-of-plane compression stress-strain curves of mullite fiber reinforced silica aerogel composites after different temperature thermal exposure
|
|
Deformation recovery ability of mullite fiber reinforced silica aerogel composites after different temperature thermal exposure
|
|
Effect of high temperature exposure on microstructure (a)aggregation of particles and clusters; (b)adhesion between matrix and fiber
|
Loading stage | | Unloading stage | α | β | γ | δ | | k1 | k2 | m1 | m2 | 0.9128 | 1.3399 | 0.02304 | -2.0386 | | 11.1536 | 0.4982 | 10.9037 | -0.5761 |
|
Material constant values of loading-unloading stage models(room temperature)
|
|
Comparison between simulation and experimental data of compression springback behaviors with different ultimate strains (a)30% strain; (b)20% strain; (c)10% strain; (d)5% strain
|
Temperature/℃ | Loading stage | | Unloading stage | α | β | γ | δ | | k1 | k2 | m1 | m2 | 300 | 1.1986 | 1.0279 | 0.0001 | -5.7244 | | 4.2407 | 1.6342 | -8.3620 | 2.9117 | 600 | 1.1003 | 1.3658 | 0.000005 | -8.2758 | | 5.2105 | 1.840 | -56.0690 | 12.9229 | 900 | 0.9817 | 1.2120 | 0.1370 | 0 | | 7.5898 | 2.3637 | -102.2332 | 23.7712 |
|
Material constant values of loading-unloading stage models(high temperature)
|
|
Comparison between simulation and experimental data of compression springback behaviors after different temperature thermal exposure (a)300 ℃; (b)600 ℃; (c)900 ℃
|
1 | AEGERTER M A . Aerogels handbook[M]. New York: Springer, 2011. | 2 | KOEBEL M , RIGACCI A , ACHARD P . Aerogel-based thermal superinsulation: an overview[J]. Journal of Sol-Gel Science and Technology, 2012, 63, 315- 339. | 3 | MALEKI H , DUR?ES L , PORTUGAL A . An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385, 55- 74. | 4 | 张贺新, 赫晓东, 何飞. 气凝胶隔热性能及复合气凝胶隔热材料研究进展[J]. 材料工程, 2007, (增刊1): 94- 97. | 4 | ZHANG H X , HE X D , HE F . Research on thermal insulation for pure aerogel and composite aerogel[J]. Journal of Materials Engineering, 2007, (Suppl 1): 94- 97. | 5 | 冯坚. 气凝胶高效隔热材料[M]. 北京: 科学出版社, 2016. | 5 | FENG J . Aerogel materials for high efficiency thermal insulation[M]. Beijing: Science Press, 2016. | 6 | 瑚佩, 姜勇刚, 张忠明, 等. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34 (4): 7082- 7090. | 6 | HU P , JIANG Y G , ZHANG Z M , et al. Research progress on high-temperature insulation composites with high mechanical property[J]. Materials Reports, 2020, 34 (4): 7082- 7090. | 7 | BLOSSER M L, CHEN R R, SCHMIDT I H, et al. Advanced metallic thermal protection system development[C]//40th Aerospace Sciences Meeting & Exhibit. Reno, Nevada: American Institute of Aeronautics and Astronautics, 2002. | 8 | 于登云. 新型航天器发展对力学学科的挑战[J]. 科学通报, 2015, 60, 1085- 1094. | 8 | YU D Y . Mechanical challenges in advanced spacecraft development[J]. Chinese Science Bulletin, 2015, 60, 1085- 1094. | 9 | 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其高效隔热复合材料研究[D]. 长沙: 国防科学技术大学, 2009. | 9 | GAO Q F. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009. | 10 | HOU X B , ZHANG R B , FANG D N . An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia, 2018, 143, 113- 116. | 11 | 余煜玺, 马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46 (11): 45- 50. | 11 | YU Y X , MA R . Preparation and characterization of silicon carbide micro/nano fibrous mat reinforced silica aerogel composites[J]. Journal of Materials Engineering, 2018, 46 (11): 45- 50. | 12 | SHI D Q , SUN Y T , FENG J , et al. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel[J]. Materials Science and Engineering: A, 2013, 585 (11): 25- 31. | 13 | 米春虎, 姜勇刚, 石多奇, 等. 陶瓷纤维增强氧化硅气凝胶复合材料力学性能实验[J]. 复合材料学报, 2014, 31 (3): 635- 643. | 13 | MI C H , JIANG Y G , SHI D Q , et al. Mechanical property test of ceramic fiber reinforced silica aerogel composites[J]. Acta Materiae Compositae Sinica, 2014, 31 (3): 635- 643. | 14 | YANG J , LI S K , LUO Y M , et al. Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading[J]. Carbon, 2011, 49 (5): 1542- 1549. | 15 | 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41 (12): 1- 35. | 15 | HUANG H Y , SU L J , LEI C S , et al. Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (12): 1- 35. | 16 | YANG X G , SUN Y T , SHI D Q . Experimental investigation and modeling of the creep behavior of ceramic fiber-reinforced SiO2 aerogel[J]. Journal of Non-Crystalline Solids, 2012, 358 (3): 519- 524. | 17 | YANG X G , WEI J , SHI D Q , et al. Comparative investigation of creep behavior of ceramic fiber reinforced alumina and silica aerogel[J]. Materials Science and Engineering: A, 2014, 609, 125- 130. | 18 | ZHANG X , ZHANG T , YI Z H , et al. Multiscale mullite fiber/whisker reinforced silica aerogel nanocomposites with enhanced compressive strength and thermal insulation performance[J]. Ceramics International, 2020, 46, 28561- 28568. | 19 | HE S , CHENG X D , LI Z , et al. Facile synthesis of sponge reinforced monolithic silica aerogels with improved mechanical pro-perty and excellent absorptivity[J]. Materials Letters, 2015, 154, 107- 111. | 20 | HE J , ZHAO H Y , LI X L , et al. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery[J]. Journal of Hazar-dous Materials, 2018, 346, 199- 207. | 21 | SI Y , AN X Q , DOU L Y , et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018, 4 (4): 8925. | 22 | LI C , DING Y W , HU B C , et al. Temperature-invariant super-elastic and fatigue resistant carbon nanofiber aerogels[J]. Advanced Materials, 2020, 32 (2): 1904331. | 23 | MURILLO J , BACHLECHNER M , CAMPO F , et al. Structure and mechanical properties of silica aerogels and xerogels modeled by molecular dynamics simulation[J]. Journal of Non-Crystalline Solids, 2010, 356 (25): 1325- 1331. | 24 | ROY S, JONES S, REINHEIMER P, et al. Mechanical characte-rization and computer simulation of crosslinked nanostructured silica aerogels[C]//50th AIAA/ASME/ASCE/AHS/ASC Stru-ctures, Structural Dynamics and Materials Conference. California: American Institute of Aeronautics and Astronautics. Palm Springs, California, USA: AIAA, 2009: 2383. | 25 | FU B , LUO H , WANG F , et al. Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression[J]. Journal of Non-Crystalline So-lids, 2011, 357 (10): 2063- 2074. | 26 | LU Z X , YUAN Z S , LIU Q , et al. Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites[J]. Materials Science and Engineering: A, 2015, 625, 278- 287. | 27 | SUN Y T , SHI D Q , YANG X G , et al. Stress state analysis of Iosipescu shear specimens for aerogel composite with different properties in tension and compression[J]. Procedia Engineering, 2013, 67, 517- 524. | 28 | 冯坚, 高庆福, 冯军宗, 等. 纤维增强SiO2气凝胶隔热复合材料的制备及其性能[J]. 国防科技大学学报, 2010, 32 (1): 40- 44. | 28 | FENG J , GAO Q F , FENG J Z , et al. Preparation and properties of fiber-reinforced SiO2 aerogel insulation composites[J]. Journal of National University of Defense Technology, 2010, 32 (1): 40- 44. | 29 | TABIEI A , WU J . Three-dimensional nonlinear orthotropic finite element material model for wood[J]. Composite Structures, 2000, 50 (2): 143- 149. | 30 | WOIGNIER T , DUFFOURS L , BEURROIES I , et al. Plasticity in aerogels[J]. Journal of Sol-Gel Science and Technology, 1997, 8 (1): 789- 794. | 31 | PHALIPPOU J , DESPETIS F , CALAS S , et al. Comparison between sintered and compressed aerogels[J]. Optical Materials, 2004, 26 (2): 167- 172. | 32 | CAI H F , JIANG Y G , QU C , et al. Sintering behavior of SiO2 aerogel composites reinforced by mullite fibers via in-situ rapid heating TEM observations[J]. Journal of the European Ceramic Society, 2020, 40 (1): 127- 135. | 33 | LIU G W , ZHOU B , NI X Y , et al. Influence of thermal process on microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths[J]. Journal of Sol-Gel Science and Technology, 2012, 62 (2): 126- 133. | 34 | 祖国庆, 沈军, 邹丽萍, 等. 弹性气凝胶的制备及其力学、热学性能研究[J]. 无机材料学报, 2014, 29 (4): 417- 422. | 34 | ZU G Q , SHEN J , ZOU L P , et al. Preparation, mechanical pro-perties and thermal properties of elastic aerogels[J]. Journal of Inorganic Materials, 2014, 29 (4): 417- 422. |
|
|
|
|