|
|
Research progress of polymer composite system in solid electrolyte |
Changyi DONG, Demei YU( ) |
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Because of its light weight, flexibility, and good contact with electrode, solid polymer electrolyte (SPE) has become a potential material for the development of electrochemical devices with high energy density, high safety and high flexibility, and has been paid extensive attention in recent years. However, defects such as low ionic conductivity and poor mechanical properties have also become the problems that limit its further commercialization. It is possible to solve these problems by forming a composite system of polymers by means of crosslinking, blending, copolymerization, etc. Therefore, in this paper, the mechanism of ionic conductivity in polymers was briefly introduced in order to explain the strategies to solve the above problems from the point of principle. Then, the applications and modification strategies of a variety of polymer-based composite electrolytes in electrochemical devices in recent years were reviewed. Finally, the problems of basic research and practical application faced currently by the composite SPEs were discussed and the solutions to these problems were given. It is hoped that this review can provide ideas for the design and preparation of future composite SPEs.
|
Received: 10 May 2021
Published: 18 April 2022
|
|
Corresponding Authors:
Demei YU
E-mail: dmyu@mail.xjtu.edu.cn
|
|
|
|
|
Conductive mechanism of solid polymer electrolytes (a)crystal vacancy diffusion model; (b)amorphous region diffusion model
|
Composition | Modification strategy | Ionic conductivity/(mS·cm-1) | Electrochemical window | Tensile strength/MPa | Thermal stability/℃ | Reference | PEO+LiTFSI (EO/Li+=10:1(mass ratio)/25%(mass fraction, the same below)LZP | Blending | 0.12 (30 ℃) | 4.7 V vs Li+/Li | — | — | [10] | PVDF+PEO (PVDF: PEO=7:3(mass ratio))+LiPF6/10% γ-Al2O3 | Blending | 0.66 (25 ℃) | 5.5 V vs Li+/Li | | 355 | [24] | 65% PAN+10% PVDF+15% LiClO4/10% LLTO | Blending | 1.43 (25 ℃) | 4.89 V vs Li+/Li | — | 500 | [18] | 0.405 g PVDF+0.27 g PVAC+0.225 g LiClO4/10% LLZTO | Blending | 0.48 (25 ℃) | 4.8 V vs Li+/Li | — | 160 | [25] | 0.27 g PAN+0.069 g I2/1.02 g EC+ 1.02 g PC+1.00 g TBAI | Gelating | 3.46 (25 ℃) | 2.2 V vs I3-/I- | — | 190 | [26] | PAN/PC+Mg(ClO4)2 | Gelating | 3.28 (30 ℃) | 4.6 V vs Mg2+/Mg | — | 100 | [27] | PS-PEO-PS+LiTFSI (EO/Li+=30: 1 (mass ratio)) | Copolymerization | 0.255 (60 ℃) | 3.8 V vs Li+/Li | — | — | [28] | PEG-HDIt+LiFSI | Copolymerization | 0.57 (55 ℃) | 4.65 V vs Li+/Li | 2.1 | — | [29] | P(EO-TEGDME)+LiTFSI (EO/Li+= 20:1)/TEGDMA | Cross-linking | 0.27 (24 ℃) | 5 V vs Li+/Li | — | 120 | [30] | PEGDGE+PEI+LiTFSI (EO/Li+=1:12 (mass ratio))/20% TEGDME | Cross-linking, Plasticizing | 1.2 (80 ℃) | 4.5 V vs Li+/Li | 0.418 | 150 | [15] | PEO+LiClO4 (EO/Li+=8:1(mass ratio))/10% SiO2 | Grafting | 1.2 (60 ℃) | 5.5 V vs Li+/Li | — | — | [31] | PEGBEM-g-PAEMA (PEGBEM/AEMA= 7:3 (mole ratio))/200% EMIMBF4 | Grafting | 1.23 (25 ℃) | — | — | 197 | [32] | PI/PEO+LiTFSI (EO/Li+=10:1 (mass ratio)) | Mixture-phase structure | 0.23 (30 ℃) | — | 40 | — | [33] | PVC+NaTf/PVDF-HFP | Mixture-phase structure | 0.12 (25 ℃) | 5.3 V vs Na+/Na | 8.9 | 200 | [34] | PVDF-HFP+PEC+80% LiTFSI | Polymer-in-salt | 0.108 (30 ℃) | 4.5 V vs Li+/Li | — | — | [35] | Polysiloxane +LiTFSI (1:1.5 (mass ratio))/10%PVDF | Polymer-in-salt | 0.4 (25 ℃) | 4.7 V vs Li+/Li | 6.8 | 160 | [36] |
|
Modification strategies and characterization results of some polymers
|
78] ">
|
Structure of solid-state battery with double-layer electrolyte[78]
|
79] ">
|
Change plots of Rp (a) and Rct (b) of GPEs with the storage time[79]
|
80]; (b)ionic conductivity of polymer electrolyte KOH-PVA and TEAOH-PVA over time[87] ">
|
Effects of different kinds of alkali salts on ion transport properties of PVA gel electrolytes (a)effect of types and concentration changes in PVA gels on ion conductivity[80]; (b)ionic conductivity of polymer electrolyte KOH-PVA and TEAOH-PVA over time[87]
|
92] (a)fresh state; (b)after 5 days; (c)after 10 days; (d)after 15 days ">
|
Comparison of the discharge curve of TEAOH-PVA gel and KOH-PVA gel at different storage time[92] (a)fresh state; (b)after 5 days; (c)after 10 days; (d)after 15 days
|
96] (a)PVA-H2SO4 gel electrolyte; (b)PVA-H3PO4 gel electrolyte ">
|
Charge storage mechanism in two acid-PVA gel electrolytes[96] (a)PVA-H2SO4 gel electrolyte; (b)PVA-H3PO4 gel electrolyte
|
105] ">
|
Synthesis of PANa-cellulose hydrogel electrolyte from MBAA, acrylate (AA) and cellulose[105]
|
107] ">
|
SEM image of cross section of hydrogel coated with PDMS elastomer[107]
|
9] ">
|
Molecular structure of single ion conductive multiblock copolymers[9]
|
126]; (b)single ion conductive polymers synthesized by Rohan et al[127] ">
|
Design of organic and inorganic hybrid SICPE (a)co-polymerization of sodium 4-styrenesulfonate and PEGMA from silica nanoparticles and lithiation[126]; (b)single ion conductive polymers synthesized by Rohan et al[127]
|
135]; (b)comparison of ionic conductivity of PVDF-based CPE with different sizes of LLZO[137]; (c)molecular structure diagram of PVDF-HFP; (d)schematic illustration for synthesis of the three-dimensional semi-interpenetrating gel polymer electrolyte[141] ">
|
Composite solid electrolyte composed of high dielectric polymers (a)Raman spectra of PVDF-SPE and PVDF/LLZTO-CPE membranes[135]; (b)comparison of ionic conductivity of PVDF-based CPE with different sizes of LLZO[137]; (c)molecular structure diagram of PVDF-HFP; (d)schematic illustration for synthesis of the three-dimensional semi-interpenetrating gel polymer electrolyte[141]
|
1 | 邵勤思, 颜蔚, 李爱军, 等. 铅酸蓄电池的发展、现状及其应用[J]. 自然杂志, 2017, 39 (4): 258- 264. | 1 | SHAO Q S , YAN W , LI A J , et al. Development, present status and applications of lead-acid battery[J]. Chinese Journal of Nature, 2017, 39 (4): 258- 264. | 2 | 葛性波, 马衍伟, 王凯, 等. 锂金属电池中复合固态电解质与负极界面的研究进展[J]. 材料工程, 2021, 49 (6): 33- 43. | 2 | GE X B , MA Y W , WANG K , et al. Research progress on interface of solid composite electrolyte and anode in lithium-metal batteries[J]. Journal of Materials Engineering, 2021, 49 (6): 33- 43. | 3 | MA W , CHEN S , YANG S , et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon, 2017, 113, 151- 158. | 4 | ARMAND M . Polymersolidelectrolytes-an overview[J]. Solid State Ionics, 1983, 9/10, 745- 754. | 5 | 李杨, 丁飞, 桑林, 等. 固态电池研究进展[J]. 电源技术, 2019, 43 (7): 1085- 1089. | 5 | LI Y , DING F , SANG L , et al. Research progress of solid-state batteries[J]. Chinese Journal of Power Sources, 2019, 43 (7): 1085- 1089. | 6 | 徐玲. PEO/PVA聚合物固态电解质的制备、改性及电化学性能的研究[D]. 绵阳: 中国工程物理研究院, 2020. | 6 | XU L. Research on preparation, modification and electrochemical performance of PEO/PVA polymer solid electrolyte[D]. Mianyang: China Academy of Engineering Physics, 2020. | 7 | YAO P , YU H , DING Z , et al. Review on polymer-based composite electrolytes for lithium batteries[J]. Frontiers in Chemistry, 2019, 7 (522) | 8 | YE T , LI L , ZHANG Y . Recent progress in solid electrolytes for energy storage devices[J]. Advanced Functional Materials, 2020, 30 (29): 2000077. | 9 | NGUYEN H D , KIM G T , SHI J , et al. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries[J]. Energy & Environmental Science, 2018, 11 (11): 3298- 3309. | 10 | WU N , CHIEN P H , LI Y , et al. Fast Li+conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte[J]. Journal of the American Chemical Society, 2020, 142 (5): 2497- 2505. | 11 | CAPUANO F , CROCE F , SCROSATI B . Composite polymer electrolytes[J]. Journal of the Electrochemical Society, 1991, 138 (7): 1918- 1922. | 12 | DUAN H , YIN Y X , SHI Y , et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers[J]. Journal of the American Chemical Society, 2018, 140 (1): 82- 85. | 13 | PETROV P , BERLINOVA I , TSVETANOV C B , et al. High-molecular-weight polyoxirane copolymers and their use in high-performance dye-sensitized solar cells[J]. Macromolecular Materials and Engineering, 2008, 293 (7): 598- 604. | 14 | FAROOQUI U R , AHMAD A L , HAMID N A . Effect of polyaniline (PANI) on poly(vinylidene fluoride-co-hexaflouro propylene) (PVDF-co-HFP) polymer electrolyte membrane prepared by breath figure method[J]. Polymer Testing, 2017, 60, 124- 131. | 15 | LEHMANN M L , YANG G , NANDA J , et al. Well-designed crosslinked polymer electrolyte enables high ionic conductivity and enhanced salt solvation[J]. Journal of the Electrochemical Society, 2020, 167 (7): 8. | 16 | YANG J M , FAN C S , WANG N C , et al. evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes[J]. Electrochimica Acta, 2018, 266, 332- 340. | 17 | MATHEW C M , KARTHIKA B , ULAGANATHAN M , et al. Electrochemical analysis on poly(ethyl methacrylate)-based electrolyte membranes[J]. Bulletin of Materials Science, 2015, 38 (1): 151- 156. | 18 | SIVARAJ P , ABHILASH K P , NALINI B , et al. Free-standing, high Li-ion conducting hybrid PAN/PVDF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries[J]. Journal of Solid State Electrochemistry, 2021, 25 (3): 905- 917. | 19 | ZHENG Y , YAO Y , OU J , et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures[J]. Chemical Society Reviews, 2020, 49 (23): 8790- 8839. | 20 | 丁黎明, 石晶, 马德柱, 等. 无定形梳状高分子固体电解质的二重玻璃化转变及典型VTF特征[J]. 高等学校化学学报, 1996, (10): 1644- 1648. | 20 | DING L M , SHI J , MA D Z , et al. Double glass transition and typical VTF characteristics of amorphous comb-like polymer solid electrolytes[J]. Chemical Journal of Chinese Universities, 1996, (10): 1644- 1648. | 21 | ZHANG J , ZHAO J , YUE L , et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials, 2015, 5 (24): 1501082. | 22 | MACGLASHAN G S , ANDREEV Y G , BRUCE P G . Structure of the polymer electrolyte poly(ethylene oxide)6: LiAsF6[J]. Nature, 1999, 398 (6730): 792- 794. | 23 | FENTON D E , PARKER J M , WRIGHT P V . Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14 (11): 589. | 24 | JIN Y , YU H , GAO Y , et al. High safety and long-life lithium batteries with low leakage and high wettability ceramic-polymer electrolyte[J]. Ionics, 2021, 27 (3): 1113- 1123. | 25 | YU X , WANG L , MA J , et al. Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries[J]. Advanced Energy Materials, 2020, 10 (18): 1903939. | 26 | CHOWDHURY F I , KHALIL I , KHANDAKER M U , et al. Electrochemical and structural characterization of polyacrylonitrile (PAN)-based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells[J]. Ionics, 2020, 26 (9): 4737- 4746. | 27 | SINGH R , JANAKIRAMAN S , KHALIFA M , et al. A high thermally stable polyacrylonitrile (PAN)-based gel polymer electrolyte for rechargeable Mg-ion battery[J]. Journal of Materials Science-Materials in Electronics, 2020, 31 (24): 22912- 22925. | 28 | DEVAUX D , GLE D , PHAN T N T , et al. Optimization of block copolymer electrolytes for lithium metal batteries[J]. Chem Mat, 2015, 27 (13): 4682- 4692. | 29 | LIN Z , GUO X , YANG Y , et al. Block copolymer electrolyte with adjustable functional units for solid polymer lithium metal battery[J]. Journal of Energy Chemistry, 2021, 52, 67- 74. | 30 | ZHANG Y , LU W , CONG L , et al. Cross-linking network based on poly(ethylene oxide): solid polymer electrolyte for room temperature lithium battery[J]. Journal of Power Sources, 2019, 420, 63- 72. | 31 | LIN D , LIU W , LIU Y , et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide)[J]. Nano letters, 2016, 16 (1): 459- 465. | 32 | KANG D A , KIM K , KARADE S S , et al. High-performance solid-state bendable supercapacitors based on PEGBEM-g-PAEMA graft copolymer electrolyte[J]. Chemical Engineering Journal, 2020, 384, 123308. | 33 | WAN J Y , XIE J , KONG X , et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat Nanotechnol, 2019, 14 (7): 705- 711. | 34 | CHEN S , CHE H , FENG F , et al. Poly(vinylene carbonate)-based composite polymer electrolyte with enhanced interfacial stability to realize high-performance room-temperature solid-state sodium batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (46): 43056- 43065. | 35 | ZHAO Y , BAI Y , BAI Y , et al. A rational design of solid polymer electrolyte with high salt concentration for lithium battery[J]. Journal of Power Sources, 2018, 407, 23- 30. | 36 | CHEN L , FAN L Z . Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte[J]. Energy Storage Materials, 2018, 15, 37- 45. | 37 | WONG T , BRODWIN M , PAPKE B L , et al. Dielectric and conductivity spectra of polyethylene oxide complexes of sodium salt[J]. Solid State Ionics, 1981, 5, 689- 692. | 38 | PAPKE B L , RATNER M A , SHRIVER D F . Vibrational spectroscopy and structure of polymer electrolytes, poly(ethylene oxide) complexes of alkali metal salts[J]. Journal of Physics and Chemistry of Solids, 1981, 42 (6): 493- 500. | 39 | DUPON R , WHITMORE D H , SHRIVER D F . Transference number measurements for the polymer electrolyte poly(ethylene oxide) NaSCN[J]. Journal of the Electrochemical Society, 1981, 128 (3): 715- 717. | 40 | PAPKE B L , DUPON R , RATNER M A , et al. Ion-pairing in polyether solid electrolytes and its influence on ion transport[J]. Solid State Ionics, 1981, 5, 685- 688. | 41 | SHRIVER D F , PAPKE B L , RATNER M A , et al. Structure and ion transport in polymer-salt complexes[J]. Solid State Ionics, 1981, 5, 83- 88. | 42 | PAPKE B L , RATNER M A , SHRIVER D F . Conformation and ion-transport models for the structure and ionic conductivity in complexes of polyethers with alkali metal salts[J]. Journal of the Electrochemical Society, 1982, 129 (8): 1694- 1701. | 43 | BERTHIER C , GORECKI W , MINIER M , et al. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts[J]. Solid State Ionics, 1983, 11 (1): 91- 95. | 44 | GORECKI W , JEANNIN M , BELORIZKY E , et al. Physical-properties of solid polymer electrolyte PEO(LITFSI) complexes[J]. Journal of Physics-Condensed Matter, 1995, 7 (34): 6823- 6832. | 45 | KOHJIYA S , IKEDA Y . Polymer solid electrolytes from poly(oxyethylene) derivatives[J]. Materials Science Research International, 1998, 4 (2): 73- 78. | 46 | FAUTEUX D , PRUD'HOMME J , HARVEY P E . Electrochemical stability and ionic conductivity of some polymer-lix based electrolytes[J]. Solid State Ionics, 1988, 28/30, 923- 928. | 47 | 刘玉龙, 辛明杨, 丛丽娜, 等. 聚氧乙烯基聚合物固态电池的界面研究进展[J]. 物理学报, 2020, 69 (22): 79- 98. | 47 | LIU Y L , XIN M Y , CONG L N , et al. Research progress on the interface of polyoxyethylene polymer solid state battery[J]. Acta Physica Sinica, 2020, 69 (22): 79- 98. | 48 | 王冉, 梅花, 任文坛, 等. PEO类聚合物基体的改性及其高性能电解质材料研究的新进展[J]. 材料导报, 2016, 30 (11): 63- 67. | 48 | WANG R , MEI H , REN W T , et al. New progress of the research on the modification of PEO polymer matrix and its high-performance solid polymer electrolyte materials[J]. Materials Reports, 2016, 30 (11): 63- 67. | 49 | SCROSATI B , GARCHE J . Lithium batteries: status, prospects and future[J]. Journal of Power Sources, 2010, 195 (9): 2419- 2430. | 50 | WANG W , YI E , FICI A J , et al. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles[J]. The Journal of Physical Chemistry C, 2017, 121 (5): 2563- 2573. | 51 | 吴浩, 邱锦, 陈卫星, 等. 水铝英石/PEO/LiClO4复合固态聚合物电解质中组分相互作用对PEO结晶的影响[J]. 材料工程, 2021, 49 (1): 35- 43. | 51 | WU H , QIU J , CHEN W X , et al. Effect of interaction in allophane/PEO/LiClO4 composite solid polymer electrolyte on crystallization of PEO[J]. Journal of Materials Engineering, 2021, 49 (1): 35- 43. | 52 | VERMA M L , SAHU H D . Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes[J]. Ionics, 2017, 23 (9): 2339- 2350. | 53 | WU X , CHEN K , YAO Z , et al. Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries[J]. Journal of Power Sources, 2021, 501, 229946. | 54 | YANG T , ZHENG J , CHENG Q , et al. Composite polymer electrolytes with Li7La3Zr2O12garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9 (26): 21773- 21780. | 55 | WANG X , ZHAI H , QIE B , et al. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte[J]. Nano Energy, 2019, 60, 205- 212. | 56 | THIAM A , ANTONELLI C , IOJOIU C , et al. Optimizing ionic conduction of poly(oxyethylene) electrolytes through controlling the cross-link density[J]. Electrochimica Acta, 2017, 240, 307- 315. | 57 | LE NEST J F , GANDINI A , CHERADAME H , et al. Influence of lithium perchlorate on the properties of polyether networks: specific volume and glass transition temperature[J]. Macromolecules, 1988, 21 (4): 1117- 1120. | 58 | WANG X , SUN J , FENG C , et al. Lithium bis(oxalate)borate crosslinked polymer electrolytes for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2021, 55, 228- 235. | 59 | 孙娉, 廖友好, 李伟善. 锂离子电池用聚丙烯腈基凝胶聚合物电解质研究进展[J]. 电池工业, 2014, 19 (2): 97- 102. | 59 | SUN P , LIAO Y H , LI W S . Research progress on polyacrylonitrile based gel polymer electrolytes for Li-ion batteries[J]. Chinese Battery Industry, 2014, 19 (2): 97- 102. | 60 | LI C , WANG J , CHANG Z , et al. Preparation and characterization of PAN-LATP composite solid-state electrolyte[J]. Scientia Sinica Chimica, 2018, 48 (8): 964- 971. | 61 | HU S , DU L , ZHANG G , et al. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13 (11): 13183- 13190. | 62 | 万锕俊, 唐志廉. 聚丙烯腈的增塑研究[J]. 高分子材料科学与工程, 2002, (3): 1- 3. | 62 | WAN A J , TANG Z L . The progress in the plastification of polyacrylonitrile[J]. Polymer Materials Science & Engineering, 2002, (3): 1- 3. | 63 | HUANG B Y , WANG Z X , LI G B , et al. Lithium ion conduction in polymer electrolytes based on PAN[J]. Solid State Ionics, 1996, 85 (1/4): 79- 84. | 64 | 马攀龙, 张忠厚, 韩琳, 等. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33 (增刊1): 457- 461. | 64 | MA P L , ZHANG Z H , HAN L , et al. Study on polyacrylonitrile gel polymer electrolyte films reinforced by crosslinking agent and non-woven fabrics[J]. Materials Reports, 2019, 33 (Suppl 1): 457- 461. | 65 | CHOWDHURY F L , KHALIL I , KHANDAKER M U , et al. Electrochemical and structural characterization of polyacrylonitrile (PAN)-based gel polymer electrolytes blended with tetrabutylammonium iodide for possible application in dye-sensitized solar cells[J]. Ionics, 2020, 26 (9): 4737- 4746. | 66 | CHOWDHURY F I , BURAIDAH M H , AROF A K , et al. Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance[J]. Sol Energy, 2020, 196, 379- 388. | 67 | JYOTHI N K , VENKATARATNAM K K , MURTY P N , et al. Preparation and characterization of PAN-KI complexed gel polymer electrolytes for solid-state battery applications[J]. Bulletin of Materials Science, 2016, 39 (4): 1047- 1055. | 68 | ZHANG X , LI T , LI P , et al. Performance of flexible supercapacitor based on TEABF4/PAN-b-PEG-b-PAN[J]. New Chemical Materials, 2019, 47 (4): 89- 92. | 69 | 邓袁元. 锂离子电池用PAN/TPU/PS凝胶聚合物电解质的制备与研究[D]. 湘潭: 湘潭大学, 2017. | 69 | DENG Y Y. Preparation and study of PAN/TPU/PS gel polymer electrolytes for lithium ion battery[D]. Xiangtan: Xiangtan University, 2017. | 70 | SAIDI N M , GOH Z L , ARIF H M , et al. Consolidation of ion promoters into quasi solid-state (QSS) polymer electrolytes for dye-sensitized solar cells (DSSCs)[J]. Solid State Ionics, 2021, 363, 115592. | 71 | VERDIER N , LEPAGE D , ZIDANI R , et al. Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-ion battery[J]. ACS Applied Energy Materials, 2019, 3 (1): 1099- 1110. | 72 | 唐致远, 王占良. 聚丙烯腈基聚合物电解质[J]. 化学通报, 2002, (6): 379- 384. | 72 | TANG Z Y , WANG Z L . PAN-based polymer electrolyte[J]. Chemistry Bulletin, 2002, (6): 379- 384. | 73 | 寻之玉, 侯璞, 刘旸, 等. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47 (11): 71- 83. | 73 | XUN Z Y , HOU P , LIU Y , et al. Research progress of polymer electrolytes in supercapacitors[J]. Journal of Materials Engineering, 2019, 47 (11): 71- 83. | 74 | LI D , CHEN L , WANG T S , et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10 (8): 7069- 7078. | 75 | XU H , ZHANG X , JIANG J , et al. Ultrathin Li7La3Zr2O12@PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery[J]. Solid State Ionics, 2020, 347, 115227. | 76 | 刘汉奎, 刘芹, 贾维尚, 等. PEO-PAN-PEO三明治结构新型固态聚合物电解质的研究[J]. 四川大学学报(自然科学版), 2018, 55 (4): 833- 837. | 76 | LIU H , LIU Q , JIA W , et al. A novel all-solid-state polymer electrolyte based on PEO-PAN-PEO sandwich structure[J]. Journal of Sichuan University (Natural Science Edition), 2018, 55 (4): 833- 837. | 77 | PAN Q , BARBASH D , SMITH D M , et al. Correlating electrode-electrolyte interface and battery performance in hybrid solid polymer electrolyte-based lithium metal batteries[J]. Advanced Energy Materials, 2017, 7 (22): 1701231. | 78 | WANG X , HAO X , XIA Y , et al. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries[J]. Journal of Membrane Science, 2019, 582, 37- 47. | 79 | LIU B , HUANG Y , CAO H , et al. A novel polyacrylonitrile-based porous structure gel polymer electrolyte composited by incorporating polyhedral oligomeric silsesquioxane by phase inversion method[J]. Journal of Solid State Electrochemistry, 2018, 22 (6): 1771- 1783. | 80 | YANG C C , LIN S J , WU G M . Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes[J]. Materials Chemistry and Physics, 2005, 92 (1): 251- 255. | 81 | YANG C C , LEE Y J , YANG J M . Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes[J]. Journal of Power Sources, 2009, 188 (1): 30- 37. | 82 | 张正富, 马明煜, 伍美珍. PVA-AA-KOH-H2O碱性聚合物电解质的制备与性能研究[J]. 功能材料, 2010, 41 (增刊2): 281- 284. | 82 | ZHANG Z F , MA M Y , WU M Z . Preparation and properties of PVA-AA-KOH-H2O alkaline polymer electrolytes[J]. Journal of Functional Materials, 2010, 41 (Suppl 2): 281- 284. | 83 | VASSAL N , SALMON E , FAUVARQUE J F . Electrochemical properties of an alkaline solid polymer electrolyte based on P(ECH-co-EO)[J]. Electrochimica Acta, 2000, 45 (8/9): 1527- 1532. | 84 | 傅婧, 乔锦丽, 马建新. 用于燃料电池的季铵基团的PVA/PAADDA碱性聚合物电解质膜的制备及稳定性[J]. 高等学校化学学报, 2011, 32 (7): 1598- 1604. | 84 | FU J , QIAO J L , MA J X . Preparation and stability of quaternary ammonium based solid alkaline electrolyte membrane for fuel cells[J]. Chemical Journal of Chinese Universities, 2011, 32 (7): 1598- 1604. | 85 | YANG C C . Study of alkaline nanocomposite polymer electrolytes based on PVA-ZrO2-KOH[J]. Materials Science & Engineering B, 2006, 131 (1/3): 256- 262. | 86 | WU Q , ZHANG J , SANG S . Preparation of alkaline solid polymer electrolyte based on PVA-TiO2-KOH-H2O and its performance in Zn-Ni battery[J]. Journal of the Physics & Chemistry of Solids, 2008, 69 (11): 2691- 2695. | 87 | GAO H , LI J , LIAN K . Alkaline quaternary ammonium hydroxides and their polymer electrolytes for electrochemical capacitors[J]. RSC Advances, 2014, 4 (41): 21332- 21339. | 88 | MOHAMAD A A , MOHAMED N S , ALIAS Y , et al. Studies of alkaline solid polymer electrolyte and mechanically alloyed polycrystalline Mg2Ni for use in nickel metal hydride batteries[J]. Journal of Alloys and Compounds, 2002, 337 (1): 208- 213. | 89 | MOHAMAD A A , MOHAMED N S , YAHYA M Z A , et al. Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells[J]. Solid State Ionics, 2003, 156 (1/2): 171- 177. | 90 | TRAN T N T , CHUNG H J , IVEY D G . A study of alkaline gel polymer electrolytes for rechargeable zinc-air batteries[J]. Electrochimica Acta, 2019, 327, 135021. | 91 | LI J , LIAN K . A comparative study of tetraethylammonium hydroxide polymer electrolytes for solid electrochemical capacitors[J]. Polymer, 2016, 99, 140- 146. | 92 | LI M , LIU B , FAN X , et al. Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc-air batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (32): 28909- 28917. | 93 | YOU X , QIAO C , PENG D , et al. Preparation of alkaline polyelectrolyte membrane based on quaternary ammonium salt-modified cellulose and its application in Zn-air flexible battery[J]. Polymers, 2020, 13 (1): 9. | 94 | 许玉玉, 杜海燕, 武泽民, 等. 凝胶聚合物电解质组装聚3, 4-乙烯二氧噻吩固态超级电容器[J]. 高分子材料科学与工程, 2020, 36 (6): 48- 54. | 94 | XU Y Y , DU H Y , WU Z M , et al. Poly 3, 4-ethylenedioxythiophene solid state supercapacitor assembled with gel polymer electrolyte[J]. Polymer Materials Science & Engineering, 2020, 36 (6): 48- 54. | 95 | WANG D C , YU H Y , QI D , et al. Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive sensors[J]. ACS Applied Materials & Interfaces, 2019, 11 (27): 24435- 24446. | 96 | ALJAFARI B , ALAMRO T , RAM M K , et al. Polyvinyl alcohol-acid redox active gel electrolytes for electrical double-layer capacitor devices[J]. Journal of Solid State Electrochemistry, 2019, 23 (1): 125- 133. | 97 | XIE Y , WANG J . Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte[J]. Journal of Sol-Gel Science and Technology, 2018, 86 (3): 760- 772. | 98 | WANG G , LU X , LING Y , et al. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors[J]. ACS Nano, 2012, 6 (11): 10296- 10302. | 99 | 巫梦丹, 周胜林, 叶安娜, 等. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器[J]. 物理学报, 2019, 68 (10): 280- 289. | 99 | WU M D , ZHOU S L , YE A N , et al. High voltage flexible solid state supercapacitor based on neutral hydrogel / oriented carbon nanotube array[J]. Acta Physica Sinica, 2019, 68 (10): 280- 289. | 100 | ASIM S , JAVED M S , KHAN J , et al. Energy storage performance of binder-free ruthenium-oxide nano-needles based free-standing electrode in neutral pH electrolytes[J]. Electrochimica Acta, 2021, 378, 138139. | 101 | AZIZ S B , HAMSAN M H , ABDULLAH R , et al. Protonic EDLC cell based on chitosan (CS): methylcellulose (MC) solid polymer blend electrolytes[J]. Ionics, 2020, 26 (4): 1829- 1840. | 102 | AZIZ S B , HAMSAN M H , BRZA M A , et al. Effect of glycerol on EDLC characteristics of chitosan: methylcellulose polymer blend electrolytes[J]. Journal of Materials Research and Technology, 2020, 9 (4): 8355- 8366. | 103 | LI Y , LIU M , DUAN S , et al. A high-voltage hybrid solid electrolyte based on polycaprolactone for high-performance all-solid-state flexible lithium batteries[J]. ACS Applied Energy Materials, 2021, 4 (3): 2318- 2326. | 104 | ZHANG J J , ZANG X , WEN H J , et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery[J]. Journal of Materials Chemistry A, 2017, 5 (10): 4940- 4948. | 105 | MA L T , CHEN S M , WANG D H , et al. Super-stretchable zinc air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte[J]. Advanced Energy Materials, 2019, 9 (12): 1803046. | 106 | LIU T , REN X , ZHANG J , et al. Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors[J]. Journal of Power Sources, 2020, 449, 227532. | 107 | MO F , LIANG G , WANG D , et al. Biomimetic organohydrogel electrolytes for high-environmental adaptive energy storage devices[J]. EcoMat, 2019, 1 (1): 12008. | 108 | WANG Y , CHEN F , LIU Z , et al. A highly elastic and reversibly stretchable all-polymer supercapacitor[J]. Angewandte Chemie International Edition, 2019, 58 (44): 15707- 15711. | 109 | LOU D , WANG C , HE Z , et al. Robust organohydrogel with flexibility and conductivity across the freezing and boiling temperatures of water[J]. Chemical Communications, 2019, 55 (58): 8422- 8425. | 110 | LI X , LOU D , WANG H , et al. Flexible supercapacitor based on organohydrogel electrolyte with long-term anti-freezing and anti-drying property[J]. Advanced Functional Materials, 2020, 30 (52): 2007291. | 111 | QUARTARONE E , MUSTARELLI P . Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40 (5): 2525- 2540. | 112 | 任超时. 新型聚硅氧烷接枝聚氧化乙烯类固体电解质的制备与电化学性能[D]. 杭州: 浙江大学, 2017. | 112 | REN C S. Synthesis and electrochemical performance of solid state electrolytes based on polysiloxane grafted polyethylene oxide[D]. Hangzhou: Zhejiang University, 2017. | 113 | 王旭尧, 刘姝伶, 闫晓丹, 等. 单离子导体聚合物电解质研究进展[J]. 新能源进展, 2020, 8 (5): 402- 412. | 113 | WANG X Y , LIU S L , YAN X D , et al. Progress on single-ion conducting polymer electrolytes[J]. Advances in New and Renewable Energy, 2020, 8 (5): 402- 412. | 114 | THOMAS K E , SLOOP S E , KERR J B , et al. Comparison of lithium-polymer cell performance with unity and nonunity transference numbers[J]. Journal of Power Sources, 2000, 89 (2): 132- 138. | 115 | DOYLE M , NEWMAN J . The use of mathematical modeling in the design of lithium/polymer battery systems[J]. Electrochimica Acta, 1995, 40 (13/14): 2191- 2196. | 116 | DOYLE M , FULLER T F , NEWMAN J . The importance of the lithium ion transference number in lithium/polymer cells[J]. Electrochimica Acta, 1994, 39 (13): 2073- 2081. | 117 | CHAZALVIEL J N . Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42 (12): 7355- 7367. | 118 | ROLLAND J , POGGI E , VLAD A , et al. Single-ion diblock copolymers for solid-state polymer electrolytes[J]. Polymer, 2015, 68, 344- 352. | 119 | DING Y , SHEN X , ZENG J , et al. Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly(vinylidene fluoride)[J]. Solid State Ionics, 2018, 323, 16- 24. | 120 | 张恒, 郑丽萍, 聂进, 等. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26 (6): 1005- 1020. | 120 | ZHANG H , ZHENG L P , NIE J , et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry, 2014, 26 (6): 1005- 1020. | 121 | BANNISTER D J , DAVIES G R , WARD I M , et al. Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers[J]. Polymer, 1984, 25 (9): 1291- 1296. | 122 | OLMEDO-MARTíNEZ J L , PORCARELLI L , ALEGRíA á , et al. High lithium conductivity of miscible poly(ethylene oxide)/methacrylic sulfonamide anionic polyelectrolyte polymer blends[J]. Macromolecules, 2020, 53 (11): 4442- 4453. | 123 | MERRILL L C , CHEN X C , ZHANG Y , et al. Polymer-ceramic composite electrolytes for lithium batteries: a comparison between the single-ion-conducting polymer matrix and its counterpart[J]. ACS Applied Energy Materials, 2020, 3 (9): 8871- 8881. | 124 | CHEN Y , LI C , YE D , et al. Lithiated polyanion supported Li1.5Al0.5Ge1.5(PO4)3 composite membrane as single-ion conducting electrolyte for security and stability advancement in lithium metal batteries[J]. Journal of Membrane Science, 2021, 620, 118926. | 125 | ZHENG J , SCHKERYANTZ L , GOURDIN G , et al. Single potassium-ion conducting polymer electrolytes: preparation, ionic conductivities, and electrochemical stability[J]. ACS Applied Energy Materials, 2021, 4 (4): 4156- 4164. | 126 | ZHAO H , JIA Z , YUAN W , et al. Fumed silica-based single-ion nanocomposite electrolyte for lithium batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (34): 19335- 19341. | 127 | ROHAN R , PAREEK K , CHEN Z , et al. A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3 (40): 20267- 20276. | 128 | MEHTA M A , FUJINAMI T . Novel inorganic-organic polymer electrolytes-preparation and properties[J]. Solid State Ionics, 1998, 113, 187- 192. | 129 | DAI K , MA C , FENG Y , et al. A borate-rich, cross-linked gel polymer electrolyte with near-single ion conduction for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7 (31): 18547- 18557. | 130 | PARK S S , TULCHINSKY Y , DINCA M . Single-ion Li+, Na+, and Mg2+solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework[J]. Journal of the American Chemical Society, 2017, 139 (38): 13260- 13263. | 131 | BLAZEJCZYK A , SZCZUPAK M , WIECZOREK W , et al. Anion-binding calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes[J]. Chemistry of Materials, 2005, 17 (6): 1535- 1547. | 132 | KALITA M , BUKAT M , CIOSEK M , et al. Effect of calixpyrrole in PEO-LiBF4 polymer electrolytes[J]. Electrochimica Acta, 2005, 50 (19): 3942- 3948. | 133 | KAYNAK M , YUSUF A , AYDIN H , et al. Enhanced ionic conductivity in borate ester plasticized polyacrylonitrile electrolytes for lithium battery application[J]. Electrochimica Acta, 2015, 164, 108- 113. | 134 | LIU T , CHANG Z , YIN Y , et al. The PVDF-HFP gel polymer electrolyte for Li-O2 battery[J]. Solid State Ionics, 2018, 318, 88- 94. | 135 | ZHANG X , LIU T , ZHANG S F , et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139 (39): 1379- 13785. | 136 | BAG S , ZHOU C , KIM P J , et al. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries[J]. Energy Storage Materials, 2020, 24, 198- 207. | 137 | SUN Y , ZHAN X , HU J , et al. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12fillers for composite polymer electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11 (13): 12467- 12475. | 138 | LI B , SU Q , YU L , et al. Biomimetic PVDF/LLTO composite polymer electrolyte enables excellent interface contact and enhanced ionic conductivity[J]. Applied Surface Science, 2021, 541, 148434. | 139 | 王园园, 乔庆东. 聚偏氟乙烯-六氟丙烯基复合聚合物电解质的化学改性研究进展[J]. 化工新型材料, 2018, 46 (2): 17- 21. | 139 | WAG Y Y , QIAO Q D . Research progress on chemical modification of PVDF-HFP based composite polymer electrolyte[J]. New Chemical Materials, 2018, 46 (2): 17- 21. | 140 | 陈淑花, 刘学武, 冯铁柱, 等. 不同温度对PVDF-HFP基多孔聚合物电解质膜孔结构及性能的影响[J]. 储能科学与技术, 2017, 6 (3): 590- 595. | 140 | CHEN S H , LIU X W , FENG T Z , et al. Effects of temperature on structure and properties of PVDF-HFP-based porous polymer electrolyte membranes prepared by non-solvent evaporate method[J]. Energy Storage Science and Technology, 2017, 6 (3): 590- 595. | 141 | LUO K , SHAO D , YANG L , et al. Semi-interpenetrating gel polymer electrolyte based on PVDF-HFP for lithium ion batteries[J]. Journal of Applied Polymer Science, 2021, 138 (11): 49993. | 142 | XIAO Q , CHEN Y , LI Q , et al. Preparation and performance of poly(vinylidene fluoride)-based crosslinked gel polymer electrolytes[J]. Polymer Materials Science & Engineering, 2020, 36 (8): 1- 10. | 143 | AHMAD A L , FAROOQUI U R , HAMID N A . Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries[J]. RSC Advances, 2018, 8 (45): 25725- 25733. | 144 | WANG X , LIU Z , TANG Y , et al. PVDF-HFP/PMMA/TPU-based gel polymer electrolytes composed of conductive Na3Zr2Si2PO12 filler for application in sodium ions batteries[J]. Solid State Ionics, 2021, 359, 115532. | 145 | KHAN S , FANG C Y , MA Y C , et al. High-performance PVDF-HFP based gel polymer electrolyte modified by core-shell SiO2-PMMA for electrochromic devices[J]. Journal of the Electrochemical Society, 2021, 168 (2): 0225047. | 146 | PAN Z , YANG J , ZHANG Q , et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019, 9 (9): 1802753. |
|
|
|
|