|
|
Effect of pre-transitional element X on structure and performance of TiAlXN coatings |
Lu WANG1,2, Leilei CHEN2, Kai XU2, Ming LOU2, Yujie DU2, Yong MAO1,*( ), Keke CHANG2 |
1 School of Materials and Energy, Yunnan University, Kunming 650091, China 2 Key Laboratory of Marine New Materials and Applied Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China |
|
|
Abstract The TiAlN-based coatings have good mechanical and anti-oxidation properties. Therefore, they have been widely used in the surface protection of typical mechanical parts, such as aero-engine compressor blades, cutting tools and precision molds. However, with the continuous improvement of the performance requirements of mechanical parts, the service conditions of the coating are becoming more and more harsh, and the reliability and service life of the protective coating are facing more severe challenges. Addition of the pre-transitional elements into TiAlN coatings is an effective method to improve their properties in various aspects for a prolonged service life. In this work, based on the ternary TiAlN coating, the effects of the addition of pre-transitional elements X (X=V, Cr, Y, Zr, Nb, Mo, Hf, Ta and W) on the structures and properties of TiAlN coatings were systematically discussed with the aid of phase diagrams. Furthermore, the composition-structure-property relationship of TiAlXN coatings was tentatively established. In view of the problems faced by adding pre-transitional elements to TiAlN coating, such as lack of phase diagram calculation assistance, failure behavior of quaternary coating in extreme environment and high cost of coating preparation equipment, the prospects of developing quaternary phase diagram of TiAlXN system combined with phase field simulation, developing TiAlN based high entropy coating and vigorously developing coating preparation technology combined with the advantages of vapor deposition technology were put forward in this paper.
|
Received: 06 October 2021
Published: 18 July 2022
|
|
Corresponding Authors:
Yong MAO
E-mail: maoyong@ynu.edu.cn
|
|
|
|
15] (a)Gibbs free energy of fcc and hcp solid solution phase in TiAlN system; (b)metastable phase formation diagram calculated based on experimental data at 550 ℃ ">
|
Thermodynamic information of phase diagram calculated based on CALPHAD method[15] (a)Gibbs free energy of fcc and hcp solid solution phase in TiAlN system; (b)metastable phase formation diagram calculated based on experimental data at 550 ℃
|
56] ">
|
H/E ratio, friction coefficient and wear rate of TiAlMoN coating change with Mo contents[56]
|
Element | Structure | Atom fraction | Hardness/ GPa | Modulus of elasticity/GPa | Zr[37] | fcc | 0.000 | 32.7 | 443 | Zr[37] | fcc | 0.050 | 38.1 | 499.7 | Zr[37] | fcc | 0.010 | 36.0 | 480 | Zr[37] | fcc | 0.170 | 36.7 | 475 | Zr[37] | fcc | 0.290 | 26.3 | 467 | Y[39] | fcc | 0.000 | 29.3 | | Y[39] | fcc | 0.010 | 36.4 | | V[28] | fcc+hcp | 0.000 | 21.0 | 250 | V[28] | fcc+hcp | 0.165 | 27.5 | 350 | V[28] | fcc+hcp | 0.200 | 25.0 | 325 | V[28] | fcc+hcp | 0.250 | 26.0 | 335 | Nb[49] | fcc | 0.000 | 32.5 | | Nb[49] | fcc | 0.330 | 28.2 | | Nb[49] | fcc | 0.520 | 31.0 | | Mo[34] | fcc | 0.028 | 38.0 | 465 | Mo[34] | fcc | 0.121 | 53.0 | 620 | Ta[30] | fcc | 0.000 | 30.0 | | Ta[30] | fcc | 0.150 | 35.0 | | W[53] | fcc | 0.020 | 34.0 | 525 | W[53] | fcc | 0.090 | 36.0 | 510 |
|
Effect of pre-transitional elements on mechanical properties of TiAlN coatings
|
64] ">
|
XRD patterns acquired after annealing for TiAlN, TiAlTa0.05N and TiAlTa0.10N coatings[64]
|
Element | Atom fraction | Annealing temperature/℃ | Structure before annealing | Structure after annealing | Cr[23] | 0.00 | 1000 | fcc | fcc+hcp | Cr[23] | 0.07 | 1100 | fcc | fcc+hcp | Zr[37] | 0.00 | 1100 | fcc | fcc+hcp | Zr[37] | 0.05 | 1200 | fcc | fcc+hcp | Zr[37] | 0.01 | 1200 | fcc | fcc+hcp | Zr[37] | 0.29 | 1300 | fcc | fcc+hcp | Nb[61] | 0.125 | 1450 | fcc | fcc+hcp | Ta[64] | 0.00 | 1000 | fcc | fcc+hcp | Ta[64] | 0.05 | 1100 | fcc | fcc+hcp | Ta[64] | 0.01 | 1200 | fcc | fcc+hcp |
|
Effect of pre-transitional elements on thermal stability of TiAlN coatings
|
75] (a)TiAlCr0.26N; (b)TiAlCr0.42N; (c)TiAlCr0.51N ">
|
Cross section morphologies and EDX-ray scanning of TiAlCrN coatings after oxidation at 1000 ℃ for 2 h[75] (a)TiAlCr0.26N; (b)TiAlCr0.42N; (c)TiAlCr0.51N
|
Element | Structure | Atom fraction | Oxidation temperature/℃ | Oxidation time/h | Mass gain/(mg· cm-2) | Hf[65] | fcc | 0.00 | 650 | 10 | 0.50 | Hf[65] | fcc | 0.02 | 650 | 10 | 0.05 | Cr[71] | fcc | 0.00 | 750 | 5 | 0.01 | Cr[71] | fcc | 0.11 | 750 | 5 | 0.005 | Cr[71] | fcc | 0.00 | 900 | 5 | 0.25 | Cr[71] | fcc | 0.11 | 900 | 5 | 0.20 | Ta[71] | fcc | 0.00 | 900 | 5 | 0.25 | Ta[71] | fcc | 0.07 | 900 | 5 | 0.50 |
|
Effect of pre-transitional elements on oxidation resistance of TiAlN coatings
|
1 | 刘亚楠. Ti811表面激光熔覆涂层组织和性能的研究[D]. 天津: 天津工业大学, 2019. | 1 | LIU Y N. Microstructure and properties of laser cladding coatings on Ti811 surface[D]. Tianjin: Tianjin Polytechnic University, 2019. | 2 | 张海兵, 张泰峰, 郭奇. 航空发动机压气机叶片损伤分析与监控对策[J]. 无损检测, 2021, 43 (1): 15- 18. | 2 | ZHANG H B , ZHANG T F , GUO Q . Damage analysis and monitoring of compressor blades of an aero engine[J]. Nondestructive Testing, 2021, 43 (1): 15- 18. | 3 | NAL-SAEWE T , GAHN L , KITTEL J , et al. Process development for tip repair of complex shaped turbine blades with IN718[J]. Procedia Manufacturing, 2020, 47, 1050- 1057. | 4 | ZHANG H H , LI Z Q , MA C S , et al. The anti-sand erosion performance of TiN films fabricated by filtered cathodic vacuum arc technique at different nitrogen flow rates[J]. Ceramics International, 2019, 45 (8): 10819- 10825. | 5 | KIRYUKHANTASEY-KORNEEY P V , PHIRI J , GLADKOV V I , et al. Erosion and abrasion resistance, mechanical properties, and structure of the TiN, Ti-Cr-Al-N and Cr-Al-Ti-N coatings deposited by CFUBMS[J]. Protection of Metals and Physical Che-mistry of Surfaces, 2019, 55 (5): 913- 923. | 6 | KUTSCHEJ K , MAYRHOFER P H , KATHREIN M , et al. Structure, mechanical and tribological properties of sputtered Ti1-xAlxN coatings with 0.75[J]. Surface and Coatings Technology, 2005, 200 (7): 2358- 2365. | 7 | RACHBAUER R , MASSL S , STERGAR E , et al. Decomposition pathways in age hardening of Ti-Al-N films[J]. Journal of App-lied Physics, 2011, 110 (2): 023515. | 8 | 许建平, 王国星, 王佳杰, 等. 多弧离子镀TiN涂层高温氧化特性[J]. 焊接技术, 2020, 49 (11): 14- 16. | 8 | XU J P , WANG G X , WANG J J , et al. High-temperature oxidation characteristics of multi-arc ion plating TiN coating[J]. Wel-ding Technology, 2020, 49 (11): 14- 16. | 9 | 张海平, 王守仁, 郭培全. TiAlN基薄膜的研究进展[J]. 机械工程材料, 2013, 37 (4): 1- 5. | 9 | ZHANG H P , WANG S R , GUO P Q . Research progress of TiAlN-based thin films[J]. Materials for Mechanical Engineering, 2013, 37 (4): 1- 5. | 10 | 王永康, 熊仁章, 雷廷权, 等. Al含量对Ti1-xAlxN涂层组织结构的影响[J]. 材料工程, 2002, (8): 24- 25. | 10 | WANG Y K , XIONG R Z , LEI T Q , et al. Effect of Al content on microstructure of Ti1-xAlxN coatings[J]. Journal of Mate-rials Engineering, 2002, (8): 24- 25. | 11 | 张雨萌, 朱丽慧, 倪旺阳, 等. Al含量对TiAlN涂层热稳定性能的影响[J]. 中南大学学报, 2013, 44 (7): 2696- 2701. | 11 | ZHANG Y M , ZHU L H , NI W Y , et al. effect of Al content on the thermal stability of TiAlN coatings[J]. Journal of Central South University, 2013, 44 (7): 2696- 2701. | 12 | 黄烨琰, 徐凯, 吴波, 等. 亚稳相图研究及其在特种陶瓷涂层中的应用进展[J]. 无机材料报, 2020, 35 (1): 19- 28. | 12 | HUANG Y Y , XU K , WU B , et al. Research on metastable phase diagrams: application roles in special ceramic coatings[J]. Journal of Inorganic Materials, 2020, 35 (1): 19- 28. | 13 | CHANG K K , BABEN M T , MUSIC D , et al. Estimation of the activation energy for surface diffusion during metastable phase formation[J]. Acta Materialia, 2015, 98, 135- 140. | 14 | CHANG K K , MUSIC D , BABEN M T , et al. Modeling of metastable phase formation diagrams for sputtered thin films[J]. Science and Technology of Advanced Materials, 2016, 17 (1): 210- 219. | 15 | LIU S D , CHANG K K , MRAZ S , et al. Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films[J]. Acta Materialia, 2019, 165, 615- 625. | 16 | CHEN L , PAULITSCH J , DU Y , et al. Thermal stability and oxidation resistance of Ti-Al-N coatings[J]. Surface & Coatings Technology, 2012, 318 (11/12): 2954- 2960. | 17 | 宋智辉, 代明江, 李洪, 等. TiAlN涂层高温行为的研究进展[J]. 电镀与涂饰, 2019, 38 (9): 447- 451. | 17 | SONG Z H , DAI M J , LI H , et al. Progress research of high-temperature behavior of TiAlN coatings[J]. Electroplating and Finishing, 2019, 38 (9): 447- 451. | 18 | SANTANA A E , KARIMI A , DERFLINGER V H , et al. The role of hcp-AlN on hardness behavior of Ti1-xAlxN nanocomposite during annealing[J]. Thin Solid Films, 2004, 469 (2): 339- 344. | 19 | ZHOU M , MAKINO Y , NOSE M , et al. Phase transition and properties of Ti-Al-N thin films prepared by r.f.-plasma assisted magnetron sputtering[J]. Thin Solid Films, 1999, 339 (1/2): 203- 208. | 20 | PEMMASANI S P , VALLETI K , GUNDAKARAM R C , et al. Effect of microstructure and phase constitution on mechanical properties of Ti1-xAlxN coatings[J]. Applied Surface Science, 2014, 313, 936- 946. | 21 | PALDEY S , DEEVI S C . Single layer and multilayer wear resis-tant coatings of (Ti, Al)N: a review[J]. Materials Science and Engineering: A, 2003, 342 (1): 58- 79. | 22 | HASEGAWA H , KAWATE M , SUZUKI T . Effects of Al contents on microstructures of Cr1-xAlxN and Zr1-xAlxN films synthesized by cathodic arc method[J]. Surface and Coatings Technology, 2005, 200 (7): 2409- 2413. | 23 | HOLEC D , RACHBAUER R , CHEN L , et al. Phase stability and alloy-related trends in Ti-Al-N, Zr-Al-N and Hf-Al-N systems from first principles[J]. Surface and Coatings Technology, 2011, 206 (7): 1698- 1704. | 24 | HUGOSSON H W , HOGBERG H , ALGREN M , et al. Theory of the effects of substitutions on the phase stabilities of Ti1-xAlxN[J]. Journal of Applied Physics, 2003, 93 (8): 4505- 4511. | 25 | MAKINO Y . Prediction of phase change in pseudobinary transition metal aluminum nitrides by band parameters method[J]. Surface and Coatings Technology, 2005, 193 (1/3): 185- 191. | 26 | PACHER F , MAYRHOFER P H , HOLEC D . Vacancy-driven extended stability of cubic metastable Ta-Al-N and Nb-Al-N phases[J]. Surface and Coatings Technology, 2017, 326, 37- 44. | 27 | SUGISHIM A , KAJIOKA H , MAKINO Y . Phase transition of pseudobinary Cr-Al-N films deposited by magnetron sputtering method[J]. Surface and Coatings Technology, 1997, 97 (1/3): 590- 594. | 28 | PFEILER M , KUTSCHEJ K , PENOY M , et al. The effect of increasing V content on structure, mechanical and tribological properties of arc evaporated Ti-Al-V-N coatings[J]. International Journal of Refractory Metals and Hard Materials, 2009, 27 (2): 502- 506. | 29 | SEIDL W M , BARTOSIK M , KOLOZSV R S , et al. Improved mechanical properties, thermal stabilities, and oxidation resis-tance of arc evaporated Ti-Al-N coatings through alloying with Ta[J]. Surface and Coatings Technology, 2018, 344, 244- 249. | 30 | OHNUMA H , NIHIRA N , MITSUO A , et al. Effect of aluminum concentration on friction and wear properties of titanium aluminum nitride films[J]. Surface and Coatings Technology, 2004, 177/178 (3): 623- 626. | 31 | SHI K , LI X , ZHAO Y , et al. Corrosion behavior and conductivity of TiNb and TiNbN coated steel for metallic bipolar plates[J]. Applied Sciences, 2019, 9 (12): 2568. | 32 | FENG C , ZHU S , LI M , et al. Effects of incorporation of Si or Hf on the microstructure and mechanical properties of Ti-Al-N films prepared by arc ion plating (AIP)[J]. Surface and Coa-tings Technology, 2008, 202 (14): 3257- 3262. | 33 | REESWINKEL T , SANGIOVANNI D G , CHIRITA V , et al. Structure and mechanical properties of TiAlN-WNx thin films[J]. Surface and Coatings Technology, 2011, 205 (20): 4821- 4827. | 34 | 倪秀英, 赵军, 孙加林, 等. 梯度结构Al2O3-(W, Ti)C-TiN-Mo-Ni纳米金属陶瓷刀具材料的设计及制备简[J]. 材料工程, 2018, 46 (2): 50- 56. | 34 | NI X Y , ZHAO J , SUN J L , et al. Design and fabrication of graded Al2O3-(W, Ti) C-Tin-Mo-Ni nano-cermet tool materials[J]. Journal of Materials Engineering, 2018, 46 (2): 50- 56. | 35 | GUO F G , HOLEC D , WANG J C , et al. Impact of V, Hf and Si on oxidation processes in Ti-Al-N: insights from ab initio mole-cular dynamics-sciencedirect[J]. Surface and Coatings Technology, 2015, 15, 381. | 36 | CHEN L , HOLEC D , DU Y , et al. Influence of Zr on structure, mechanical and thermal properties of Ti-Al-N[J]. Thin Solid Film, 2011, 519 (16): 5503- 5510. | 37 | 王成蹊. 合金化对Ti-Al-N涂层结构稳定性及性能影响的研究[D]. 广州: 华南理工大学, 2013. | 37 | WANG C Y. Influence of alloying on the structural stability and performance of Ti-Al-N coatings[D]. Guangzhou: South China University of Technology, 2013. | 38 | BELOUS V A , VASVLIEV V V , GOLTWANYTSYA V S , et al. Structure and properties of Ti-Al-Y-N coatings deposited from filtered vacuum-arc plasma[J]. Surface & Coatings Technology, 2011, 206 (7): 1720- 1726. | 39 | ZHU L , ZHANG Y , NI W , et al. The effect of yttrium on cathodic arc evaporated Ti0.45Al0.55N coating[J]. Surface and Coa-tings Technology, 2013, 214, 53- 58. | 40 | 郭策安, 赵宗科, 胡明, 等. 添加Y对电弧离子镀TiAlN薄膜结构和摩擦磨损性能的影响[J]. 表面技术, 2018, 47 (10): 139- 144. | 40 | GUO C A , ZHAO Z K , HU M , et al. Influence of Y on microstructure and performance of friction and wear of arc ion plated TiAlN film[J]. Surface Technology, 2018, 47 (10): 139- 144. | 41 | PFLVGER E , SCHROER A , VOUMARD P , et al. Influence of incorporation of Cr and Y on the wear performance of TiAlN coatings at elevated temperatures[J]. Surface & Coatings Technology, 1999, 115 (1): 17- 23. | 42 | BELOUS V , VASYLIEV V , LUCHANINOV A , et al. Cavitation and abrasion resistance of Ti-Al-Y-N coatings prepared by the PⅢ&D technique from filtered vacuum-arc plasma[J]. Surface and Coatings Technology, 2013, 223, 68- 74. | 43 | MOSER M , MAYRHOFER P H , SZEKELY L , et al. Influence of bipolar pulsed DC magnetron sputtering on elemental composition and micro-structure of Ti-Al-Y-N thin films[J]. Surface & Coatings Technology, 2008, 203 (1/2): 148- 155. | 44 | 李德元, 王新, 金浩, 等. V元素对TiAlVN膜层组织和抗热震性能的影响[J]. 沈阳工业大学学报, 2017, 39 (2): 137- 141. | 44 | LI D Y , WANG X , JIN H , et al. Effect of V element on the structure and thermal shock resistance of TiAlVN film[J]. Journal of Shenyang University of Technology, 2017, 39 (2): 137- 141. | 45 | PFEILER M , KUTSCHEJ K , PENOY M , et al. The influence of bias voltage on structure and mechanical/tribological properties of arc evaporated Ti-Al-V-N coatings[J]. Surface and Coatings Technology, 2007, 202 (4): 1050- 1054. | 46 | SATO K , ICHIMIYA N , KONDO A , et al. Microstructure and mechanical properties of cathodic arc ion-plated (Al, Ti)N coa-tings[J]. Surface and Coatings Technology, 2003, 163, 135- 143. | 47 | KUTSCHEJ K , MAYRHOFER P H , KATHREIN M , et al. A new low-friction concept for Ti1-xAlxN based coatings in high-temperature applications[J]. Surface and Coatings Technology, 2004, 188/189, 358- 363. | 48 | MIKULA M , PLA?IENKA D , SANGIOVANNI D G , et al. Toughness enhancement in highly NbN-alloyed Ti-Al-N hard coatings[J]. Acta Materialia, 2016, 121, 59- 67. | 49 | 刘慧君, 吴明晶, 王社权. Nb添加对TiAlN涂层结构, 力学和热性能的影响[J]. 硬质合金, 2019, 36 (3): 184- 191. | 49 | LIU H J , WU M J , WANG S Q . Effect of Nb-addition on the structure, mechanical and thermal properties of TiAlN coating[J]. Cemented Carbide, 2019, 36 (3): 184- 191. | 50 | MARTIN C D , KAISER P K , MCCREATH D R . Hoek-Brown parameters for predicting the depth of brittle failure around tu-nnels[J]. Revue Canadienne De Géotechnique, 1999, 36 (1): 136- 151. | 51 | TREDWAY W K . Toughened ceramics[J]. Materials Science, 1998, 282 (5392): 1275. | 52 | GLATZ S A , BOLVARDI H , KOLOZSV RI S , et al. Arc evaporated W-alloyed Ti-Al-N coatings for improved thermal stability, mechanical, and tribological properties[J]. Surface and Coatings Technology, 2017, 332, 275- 282. | 53 | SANGIOVANNI D G , CHIRITA V , HULTMAN L . Toughness enhancement in TiAlN-based quarternary alloys[J]. Thin Solid Films, 2012, 520 (11): 4080- 4088. | 54 | YANG Q , ZHAO L R , PATNAIK P C , et al. Wear resistant TiMoN coatings deposited by magnetron sputtering[J]. Wear, 2006, 261 (2): 119- 125. | 55 | 何胜军, 高原, 王成磊, 等. Mo掺入对TiAlN涂层微观组织和摩擦性能的影响[J]. 金属热处理, 2017, 42 (9): 187- 190. | 55 | HE S J , GAO Y , WANG C L , et al. effect of Mo doping on the microstructure and friction properties of TiAlN coatings[J]. Heat Treatment of Metals, 2017, 42 (9): 187- 190. | 56 | YANG K , XIAN G , ZHAO H , et al. Effect of Mo content on the structure and mechanical properties of TiAlMoN films deposited on WC-Co cemented carbide substrate by magnetron sputtering[J]. International Journal of Refractory Metals and Hard Materials, 2015, 52, 29- 35. | 57 | YUAN Z G , YANG J F , CHENG Z J , et al. Preparation and characterization of the Mo(C)N/Mo(C) multilayer coating[J]. Surface and Coatings Technology, 2013, 231 (9): 14- 18. | 58 | LEYLAND A , MATTHEWS A . On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour[J]. Wear, 2000, 246 (1): 1- 11. | 59 | FORSEN R , JOHANSSON M , ODEN M , et al. Decomposition and phase transformation in TiCrAlN thin coatings[J]. Journal of Vacuum Science and Technology a Vacuum Surfaces and Films, 2012, 30 (6): 061506- 061508. | 60 | YANG B , CHEN L , XU Y X , et al. Effect of Zr on structure and properties of Ti-Al-N coatings with varied bias[J]. International Journal of Refractory Metals and Hard Materials, 2013, 38, 81- 86. | 61 | MAYRHOFER P H , RACHBAUER R , HOLEC D . Influence of Nb on the phase stability of Ti-Al-N[J]. Scripta Materialia, 2010, 63 (8): 807- 810. | 62 | LI C , YONG D , MAYRHOFER P H , et al. The influence of age-hardening on turning and milling performance of Ti-Al-N coated inserts[J]. Surface and Coatings Technology, 2008, 202 (21): 5158- 5161. | 63 | CHEN Y H , ROA J J , YU C H , et al. Enhanced thermal stability and fracture toughness of TiAlN coatings by Cr, Nb and V-alloying[J]. Surface and Coatings Technology, 2018, 342, 85- 93. | 64 | RACHBAUER R , HOLEC D , MAYRHOFER P H . Increased thermal stability of Ti-Al-N thin films by Ta alloying[J]. Surface and Coatings Technology, 2012, 211, 98- 103. | 65 | RACHBAUER R , BLUTMAGER A , HOLEC D , et al. Effect of Hf on structure and age hardening of Ti-Al-N thin films[J]. Surface and Coatings Technology, 2012, 206 (10): 2667- 2672. | 66 | FENG C , ZHU S , LI M , et al. The effect of Hf on the oxidation and corrosion behavior of Ti0.7Al0.3N coating prepared by arc-ion plating[J]. Oxidation of Metals, 2008, 71 (1/2): 63- 76. | 67 | FENG C , LI M , XIN L , et al. Mechanical properties and oxidation behavior of a graded (Ti, Al)N coating deposited by arc-ion plating[J]. Oxidation of Metals, 2006, 65 (5/6): 307- 327. | 68 | PFEILER M , SCHEU C , HUTTER H , et al. On the effect of Ta on improved oxidation resistance of Ti-Al-Ta-N coatings[J]. Journal of Vacuum Science & Technology a Vacuum Surfaces and Films, 2009, 27 (3): 554- 560. | 69 | HOLLERWEGER R , RIEDL H , PAULITSCH J , et al. Origin of high temperature oxidation resistance of Ti-Al-Ta-N coatings[J]. Surface and Coatings Technology, 2014, 257, 78- 86. | 70 | ROGSTR M L , ULLBRAND J , ALMER J , et al. Strain evolution during spinodal decomposition of TiAlN thin films[J]. Thin Solid Films, 2012, 520 (17): 5542- 5549. | 71 | PENG B , LI H , ZHANG Q , et al. High-temperature thermal stability and oxidation resistance of Cr and Ta co-alloyed TiAlN coatings deposited by cathodic arc evaporation[J]. Corrosion Science, 2020, 167, 108490. | 72 | FOX-RABINOVICH G S , KOVALEV A I , AGUIRRE M H , et al. Design and performance of AlTiN and TiAlCrN PVD coa-tings for machining of hard to cut materials[J]. Surface and Coa-tings Technology, 2009, 204 (4): 489- 496. | 73 | 楼白杨, 周艳. CrTiAlN涂层的高温抗氧化性能[J]. 材料科学与工程学报, 2016, 34 (2): 204- 207. | 73 | LOU B Y , ZHOU Y . High-temperature oxidation resistance of CrTiAlN coatings[J]. Chinese Journal of Materials Science and Engineering, 2016, 34 (2): 204- 207. | 74 | XU Y X , CHEN L , YANG B , et al. Effect of CrN addition on the structure, mechanical and thermal properties of Ti-Al-N coating[J]. Surface and Coatings Technology, 2013, 235, 506- 512. | 75 | DANEK M , FERNANDES F , CAVALEIRO A , et al. Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films[J]. Surface and Coatings Technology, 2017, 313, 158- 167. |
|
|
|
|