|
|
Progress in Fabrication and Microwave Absorption Capacity of Graphene-based Magnetic Nanocomposites |
JIA Hai-peng1, SU Xun-jia1, HOU Gen-liang1, CAO Xiao-ping2, BI Song1, LIU Zhao-hui1 |
1. The Second Artillery Engineering University, Xi’an 710025, China;
2. The 96819 Army of PLA, Beijing 100192, China |
|
|
Abstract After describing the novel configuration and tremendous properties of graphene, the fabrication methods of graphene-based magnetic nanocomposites are reviewed. Then microwave absorbing mechanisms of the nanocomposites are discussed. At last perspectives on the studies of the nanocomposites are provided. The further studies mainly include tailoring the micro-morphology and structure of nanocomposites, researching the interface interaction of nanocomposites, and investigating synergy of microwave absorption between graphene and magnetic nanoparticles.
|
Received: 06 April 2012
Published: 20 May 2013
|
|
|
|
|
[1] WANG Yan-min, LI Ting-xi, ZHAO Li-feng, et al. Research progress on nanostructured radar absorbing materials[J]. Energy and Power Engineering, 2011, 3(4):580-584.[2] MICHELI D, APOLLO C, PASTORE R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology, 2010, 70(2): 400-409.[3] TONG Guo-xiu, WU Wen-hua, QIAO Ru, et al. Morphology dependence of static magnetic and microwave electromagnetic characteristics of polymorphic Fe3O4 nanomaterials[J]. Journal of Materials Research, 2011, 26(13): 1639-1645.[4] ZHAN Ying-qing, MENG Fan-bin, LEI Ya-jie, et al. One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties[J]. Materials Letters, 2011, 65(11): 1737-1740.[5] ZHAN Ying-qing, MENG Fan-bin, YANG Xu-lin, et al. Solvothermal synthesis and characterization of functionalized graphene sheets (FGSs)/magnetite hybrids[J]. Materials Science and Engineering B, 2011, 176(16): 1333-1339.[6] 李国显,王涛,薛海荣,等. 石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J]. 航空学报, 2011, 32(9): 1732-1739. LI Guo-xian, WANG Tao, XUE Hai-rong, et al. Synthesis and electromagnetic wave absorption properties of graphene/Fe3O4 composite materials[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1732-1739.[7] 方建军,李素芳,查文珂,等. 镀镍石墨烯的微波吸收性能[J]. 无机材料学报,2011, 26(5): 467-471. FANG J J, LI S F, ZHA W K, et al. Microwave absorbing properties of nickel-coated graphene[J]. Journal of Inorganic Materials, 2011, 26(5): 467-471.[8] GEIM A K,NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.[9] GEIM A K, MACDONALD A H. Graphene: exploring carbon flatland[J]. Physics Today, 2007, 60(8): 35-41.[10] LOH K P, BAO Q L, ANG P K, et al. The chemistry of graphene[J]. Journal of Materials Chemistry, 2010, 20(12): 2277-2289.[11] MIKHAILOV S A. Electromagnetic response of electrons in graphene: non-linear effects[J]. Physica E, 2008, 40(7): 2626-2629.[12] RAO C N R, SOOD A K, SUBRAHMANYAM K S, et al. Graphene: the new two-dimensional nanomaterial[J]. Angewandte Chemie International Edition, 2009, 48(42): 7752-7777.[13] GREEN A A, HERSAM M C. Solution phase production of graphene with controlled thickness via density differentiation[J]. Nano Letter, 2009, 9(12): 4031-4036.[14] OWEN C C, BONNY J, DMITRIY A D, et al. Chemically active reduced graphene oxide with tunable C/O ratios[J]. ACS Nano, 2011, 5(6): 4380-4391.[15] VITCHEV R, MALESEVIC A, PETROV R H, et al. Initial stages of few-layer graphene growth by microwave plasma-enhanced chemical vapour deposition[J]. Nanotechnology, 2010, 21(9): 095602.[16] BERGER C, SONG Z M, LI T B, et al. Ul-trathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108(52): 19912-19916.[17] SHAFRANJUK S E. Electromagnetic properties of the graphene junctions[J]. Eur Phys J B, 2011, 80(3): 379-393.[18] WANG Chao, HAN Xi-jiang, XU Ping, et al. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material[J]. Applied Physics Letters, 2011, 98(7): 072906.[19] GIOVANNI D B, ALESSIO T, ADRIAN D, et al. Electromagnetic properties of composites containing graphite nanoplatelets at radio frequency[J]. Carbon, 2011, 49(13): 4291-4300.[20] RUIZ-HITZKY E, DARDER M, FERNANDES F M, et al. Supported graphene from natural resources: easy preparation and applications[J]. Adv Mater, 2011, 23(44): 5250-5255.[21] BAI Song, SHEN Xiao-ping. Graphene-inorganic nanocomposites[J]. RSC Advances, 2012, 2(1): 64-98.[22] VIRENDRA S, DAEHA J, LEI Z, et al. Graphene based materials: past, present and future[J]. Progress in Materials Science, 2011, 56(8): 1178-1271.[23] PATZKE G R, ZHOU Y, KONTIC R, et al. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations[J]. Angewandte Chemie International Edition, 2010, 50(4): 826-859.[24] SHI Wen-hui, ZHU Ji-xin, SIM D H, et al. Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites[J].J Mater Chem,2011,21(10):3422-3427.[25] ZHU Ji-xin, SHARMA Y K, ZENG Zhi-yuan, et al. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes[J]. J Phys Chem C, 2011, 115(16): 8400-8406.[26] CHANG Kun, CHEN Wei-xiang. In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion Batteriesw[J]. Chem Commun, 2011, 47(14): 4252-4254.[27] FU Yong-sheng, WANG Xin. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation[J]. Ind Eng Chem Res, 2011, 50(12): 7210-7218.[28] BAGHBANZADEH M, CARBONE L, COZZOLI P D, et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals[J]. Angew Chem Int Ed, 2011, 50(48): 11312-11359.[29] YAN Jun, WEI Tong, QIAO Wen-ming, et al. Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors[J]. Electrochimica Acta, 2010, 55(23): 6973-6978.[30] ZHU Xian-jun, ZHU Yan-wu, MURALI S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries[J]. ACS Nano, 2011, 5(4): 3333-3338.[31] ZHANG Ming, LEI Dan-ni, YIN Xiao-ming, et al. Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries[J]. J Mater Chem, 2010, 20(26): 5538-5543.[32] ZHOU Guang-min, WANG Da-wei, LI Feng, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries[J]. Chem Mater, 2010, 22(18): 5306-5313.[33] YANG Hong-bin, GUAI Guan-hong, GUO Chun-xian, et al. NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell[J]. J Phys Chem C, 2011, 115(24): 12209-12215.[34] HUANG Xiao, QI Xiao-ying, BOEY F, et al. Graphene-based composites[J]. Chem Soc Rev, 2012, 41(2):666-686.[35] WANG Dong-hai, KOU Rong, CHOI D, et al. Ternary self-assembly of ordered metal oxide graphene nanocomposites for electrochemical energy storage[J]. ACS Nano, 2010, 4(3):1587-1595.[36] CONG Huai-ping, HE Jia-jun, LU Yang, et al. Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications[J]. Small, 2010, 6(2):169-173.[37] 张燕玲. 纳米材料及其磁功能化组装的研究[D]. 上海:东华大学,2011.[38] HE Fu-an, FAN Jin-tu, MA Dong, et al. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding[J]. Carbon, 2010, 48(11): 3139-3144.[39] LI Ying, CHU Jia, QI Jing-yao, et al. An easy and novel approach for the decoration of graphene oxide by Fe3O4 nanoparticles[J]. Applied Surface Science, 2011, 257(14): 6059-6062.[40] PHAM T A, KUMAR N A, JEONG Y T. Covalent functionalization of graphene oxide with polyglycerol and their use as templates for anchoring magnetic nanoparticles[J]. Synthetic Metals, 2010, 160(17-18): 2028-2036.[41] ZHANG Yi, CHEN Biao, ZHANG Li-ming, et al. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide[J]. Nanoscale, 2011, 3(4): 1446-1450.[42] KUILA T, BOSE S, HONG C E, et al. Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method[J]. Carbon, 2011, 49 (3): 1033-1051.[43] ZHAN Ying-qing, ZHAO Rui, LEI Ya-jie, et al. Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4 inorganic hybrid material[J]. Applied Surface Science, 2011,257(9): 4524-4528.[44] NI Shi-bing, WANG Xing-hui, ZHOU Guo, et al. Designed synthesis of wide range microwave absorption Fe3O4-carbon sphere composite[J].J Alloys Compd,2010,489(1):252-256.[45] 王晨, 康飞宇, 顾家琳. 铁钴镍合金粒子/石墨薄片复合材料的制备与吸波性能研究[J]. 无机材料学报,2010, 25(4): 406-410. WANG C, KANG F Y, GU J L. Synthesis and microwave absorbing properties of FeCoNi alloy particles/graphite flaky composites [J]. Journal of Inorganic Materials, 2010, 25(4): 406-410.[46] DIONNE G F. Magnetic Oxides[M]. New York: Springer Science+Business Media, 2009.[47] DU A J, NG Y H, BELL N J, et al. Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response[J]. J Phys Chem Lett, 2011, 2(8): 894-899.[48] DU A J, SMITH S C. Electronic functionality in graphene-based nanoarchitectures: discovery and design via first-principles modeling[J]. J Phys Chem Lett, 2011, 2(2): 73-80.[49] LIU Yi-lun, XIE Bo, XU Zhi-ping. Mechanics of coordinative crosslinks in graphene nanocomposites: a first-principles study[J]. J Mater Chem, 2011, 21(18): 6707-6712. |
|
|
|