|
|
Research Progress on Permeability of Fiber Composite Preforms with Structural Dependence |
DONG Shu-hua1,2, WANG Cheng-guo1, JIA Yu-xi1, JIAO Xue-jian3 |
1. Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China;
2. School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong, China;
3. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, Shandong, China |
|
|
Abstract The permeability of fiber composite preforms, which is dependent on the multi-level structures of the preforms, is an important parameter influencing the resin flow during liquid composite molding. The research progress on the relationship between the permeability and the structure of the preforms was introduced from the viewpoint of the micro-level, meso-level and macro-level, respectively. The influence of various factors on the permeability of the preforms and the mathematical model were reviewed. The development tendency of the permeability research is prospected, which will help to reveal the defect formation mechanism of the composite products and further design the composite products and molding processes.
|
Received: 12 March 2012
Published: 20 May 2013
|
|
|
|
|
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12.DU Shan-yi. Advanced composite materials and aerospace engineering [J]. Acta Materiae Compositae Sinica, 2007, 24(1):1-12.[2] 沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用[J]. 材料科学与工艺, 2008, 16(5): 737-740.SHEN Jun, XIE Huai-qin. Development of research and application of the advanced composite materials in the aerospace engineering [J]. Materials Science & Technology, 2008, 16(5): 737-740.[3] LEE D H, LEE W I, KANG M K. Analysis and minimization of void formation during resin transfer molding process [J]. Composites Science and Technology, 2006, 66(16): 3281-3289.[4] HAMIDI Y K, DHARMAVARAM S, AKTAS L, et al. Effect of fiber content on void morphology in resin transfer molded E-glass/epoxy composites [J]. Journal of Engineering Materials and Technology, 2009, 131: 021014-1-021014-11.[5] TAN H, PILLAI K M. Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: isothermal flows [J]. Composites: Part A, 2012, 43(1): 1-13.[6] LOENDERSLOOT R. The structure-permeability relation of textile reinforcements. Enschede: University of Twente, 2006.[7] CHEN Z R, YE L, LU M. Permeability predictions for woven fabric preforms [J]. Journal of Composite Materials, 2010, 44(13): 1569-1586.[8] 李嘉禄, 吴晓青, 冯驰. RTM中纤维渗透率预测的研究进展[J]. 复合材料学报, 2006, 23(6): 1-8.LI Jia-lu, WU Xiao-qing, FENG Chi. Research progress on the permeability prediction of fiber in RTM [J]. Acta Materiae Compositae Sinica, 2006, 23(6): 1-8.[9] RODRIGUEZ E, GIACOMELLI F, VAZQUEZ A. Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements [J]. Journal of Composite Materials, 2004, 38(3): 259-268.[10] GEBART B R. Permeability of unidirectional reinforcements for RTM [J]. Journal of Composite Materials, 1992, 26(8): 1100-1133.[11] CHEN X M, PAPATHANASIOU T D. The transverse permeability of disordered fiber arrays: a statistical correlation in terms of the mean nearest interfiber spacing [J]. Transport in Porous Media, 2008, 71(2): 233-251.[12] NABOVATI A, SOUSA A C M. Fluid flow simulation in random porous media at pore level using the lattice Boltzmann method [J]. Journal of Engineering Science and Technology, 2007, 2(3): 226-237.[13] NABOVATI A, LLEWELLIN E W, SOUSA A C M. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method [J]. Composites: Part A, 2009, 40(6-7): 860-869.[14] SONG Y S, CHUNG K, KANG T J, et al. Prediction of permeability tensor for three dimensional circular braided preform by applying a finite volume method to a unit cell [J]. Composites Science and Technology, 2004, 64(10-11): 1629-1636.[15] VERLEYE B, CROCE R, GRIEBEL M, et al. Permeability of textile reinforcements: simulation, influence of shear and validation [J]. Composites Science and Technology, 2008, 68(13): 2804-2810.[16] NGO N D, TAMMA K K. Microscale permeability predictions of porous fibrous media [J]. International Journal of Heat and Mass Transfer, 2001, 44(16): 3135-3145.[17] 吴炎, 晏石林, 谭华. 具有空隙尺寸双尺度特性的纤维织物渗透率的预测[J]. 固体力学学报, 2008, 29(增刊1): 80-84. WU Yan, YAN Shi-lin, TAN Hua. Predication of permeability in a glass-fiber mat with dual-scale pore-size [J]. Chinese Journal of Solid Mechanics, 2008, 29(S1): 80-84.[18] VERLEYE B, LOMOV S V, LONG A, et al. Permeability prediction for the meso-macro coupling in the simulation of the impregnation stage of resin transfer moulding [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(1): 29-35.[19] LUNDSTROM T S. The permeability of non-crimp stitched fabrics [J]. Composites: Part A, 2000, 31(12): 1345-1353.[20] LEKAKOU C, EDWARDS S, BELL G, et al. Computer modelling for the prediction of the in-plane permeability of non-crimp stitch bonded fabrics [J]. Composites: Part A, 2006, 37(6): 820-825.[21] NORDLUND M, LUNDSTROM T S. Numerical study of the local permeability of noncrimp fabrics [J]. Journal of Composite Materials, 2005, 39(10): 929-947.[22] 何海东, 贾玉玺, 丁妍羽, 等. 无弯曲纤维织物面内渗透率的结构相关性[J]. 复合材料学报, 2011, 28(5): 70-76. HE Hai-dong, JIA Yu-xi, DING Yan-yu, et al. Structure-relationship of the in-plane permeability of non-crimped fabrics [J]. Acta Materiae Compositae Sinica, 2011, 28(5): 70-76.[23] ENDRUWEIT A, LONG A C. A model for the in-plane permeability of triaxially braided reinforcements [J]. Composites: Part A, 2011, 42(2): 165-172.[24] SIMACEK P, ADVANI S G. A numerical model to predict fiber tow saturation during liquid composite molding [J]. Composites Science and Technology, 2003, 63(12): 1725-1736.[25] ZHOU F P, KUENTZER N, SIMACEK P, et al. Analytic characterization of the permeability of dual-scale fibrous porous media [J]. Composites Science and Technology, 2006, 66(15): 2795-2803.[26] ZHOU F P, ALMS J, ADVANI S G. A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions [J]. Composites Science and Technology, 2008, 68(3-4): 699-708.[27] KUENTZER N, SIMACEK P, ADVANI S G, et al. Permeability characterization of dual scale fibrous porous media [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(11): 2057-2068.[28] 戴福洪, 卢守舟, 杜善义. 树脂传递模塑工艺中的非饱和流动过程模拟与实验研究[J].复合材料学报,2010,27(2):84-89. DAI Fu-hong, LU Shou-zhou, DU Shan-yi. Simulations and experiments of unsaturated flow in resin transfer molding process [J]. Acta Materiae Compositae Sinica, 2010, 27(2): 84-89.[29] FRANCUCCI G, RODRÍGUEZ E S, VÁZQUEZ A. Study of saturated and unsaturated permeability in natural fiber fabrics [J]. Composites: Part A, 2010, 41(1): 16-21.[30] 田正刚, 祝颖丹, 张垣, 等. 剪切效应对纤维增强材料渗透率的影响[J]. 武汉理工大学学报, 2005, 27(2): 4-6. TIAN Zheng-gang, ZHU Ying-dan, ZHANG Yuan, et al. Influence of shearing effects on the permeability of fiber reinforcement [J]. Journal of Wuhan University of Technology, 2005, 27(2): 4-6.[31] LAI C L, YOUNG W B. Model resin permeation of fiber reinforcements after shear deformation [J]. Polymer Composites, 1997, 18(5): 642-648.[32] DEMARIA C, RUIZ E, TROCHU F. In-plane anisotropic permeability characterization of deformed woven fabrics by unidirectional injection. Part II: prediction model and numerical simulations [J]. Polymer Composites, 2007, 28(6): 812-827.[33] 梁晓宁, 李炜, 罗永康, 等. 厚铺层结构纤维增强体渗透性能研究[J]. 玻璃钢/复合材料, 2010, (1): 46-52. LIANG Xiao-ning, LI Wei, LUO Yong-kang, et al. Study of permeable property of thick-section reinforcement [J]. Fiber Reinforced Plastics/Composites, 2010, (1): 46-52.[34] 陈萍, 李宏运, 陈祥宝. 铺层方式对织物渗透率的影响[J]. 复合材料学报, 2001, 18(1): 30-33. CHEN Ping, LI Hong-yun, CHEN Xiang-bao. Effect of layers on permeability [J]. Acta Materiae Compositae Sinica, 2001, 18(1): 30-33.[35] 高娟娟, 张佐光, 梁子青, 等. 织物预成型体厚度方向渗透特性研究[J]. 材料工程, 2006, (9): 20-22. GAO Juan-juan, ZHANG Zuo-guang, LIANG Zi-qing, et al. Research on vertical permeability of fabric preforms [J]. Journal of Materials Engineering, 2006, (9): 20-22.[36] NABOVATI A, LLEWELLIN E W, SOUSA A C M. Through-thickness permeability prediction of three-dimensional multifilament woven fabrics [J]. Composites: Part A, 2010, 41(4): 453-463.[37] SONG Y S, HEIDER D, YOUN J R. Statistical characteristics of out-of-plane permeability for plain-woven structure [J]. Polymer Composites, 2009, 30(10): 1465-1472.[38] MEROTTE J, SIMACEK P, ADVANI S G. Resin flow analysis with fiber preform deformation in through thickness direction during compression resin transfer molding [J]. Composites: Part A, 2010, 41(7): 881-887.[39] SIMACEK P,ADVANI S G. Permeability model for a woven fabric [J]. Polymer Composites,1996, 17(6): 887-899.[40] 克鲁肯巴赫, 佩顿. 航空航天复合材料结构件树脂传递模塑成形技术[M]. 李宏运,译.北京:航空工业出版社, 2009.[41] NGO N D, TAMMA K K. Complex three-dimensional microstructural permeability prediction of porous fibrous media with and without compaction [J]. International Journal for Numerical Methods in Engineering, 2004, 60(10): 1741-1757.[42] GOLESTANIAN H, POURSINA M. Neural network analysis application to permeability determination of fiberglass and carbon preforms [J]. Chinese Journal of Polymer Science, 2009, 27(2): 221-229.[43] GOLESTANIAN H. Preform permeability variation with porosity of fiberglass and carbon mats [J]. Journal of Materials Science, 2008, 43(20): 6676-6681.[44] SHIH C H,LEE L J. Effect of fiber architecture on permeability in liquid composite molding [J]. Polymer Composites,1998, 19(5): 626-639. |
|
|
|