|
|
Research progress in functionalization of photocured bioceramics |
Chen JIAO1, Huixin LIANG2, Yun YE1, Hanxu ZHANG1, Zhijing HE1, Youwen YANG3, Lida SHEN1,*( ), Feng HOU4 |
1 Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2 State Key Laboratory of Pharmaceutical Biotechnology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing 210008, China 3 Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China 4 Prismlab China Ltd., Shanghai 200233, China |
|
|
Abstract In recent years, photocured ceramics has become one of the rapidly developing additive manufacturing technologies. Bioceramics have a promising future in tissue engineering due to their good cellular compatibility, however, a single bioceramic material is difficult to take into account both mechanical properties and biocompatibility, so the application and promotion are greatly limited. In this paper, the modification and design methods of bioceramic materials suitable for photocuring were reviewed. The comprehensive effects of material modification, surface modification, structural design and microstructural regulation on the biological properties such as bone conduction, bone induction, antibacterial, angiogenesis promotion and other biological properties as well as and basic mechanical properties of were discussed. It was pointed out that the function of photocurable bioceramics can be fully realized and its further application can be promoted through the combination of modification and regulation methods, and the realization and interaction mechanism of multifunction should be explored.
|
Received: 31 August 2021
Published: 18 July 2022
|
|
Corresponding Authors:
Lida SHEN
E-mail: ldshen@nuaa.edu.cn
|
|
|
|
14]; (c)ceramic bone filler[15] ">
|
Main applications of bioceramics (a)Biolox® inert ceramic hip joint; (b)dental implants[14]; (c)ceramic bone filler[15]
|
Type | Composition | Compressive strength/MPa | Bending strength/ MPa | Elastic modulus/ GPa | Fracture toughness/ (MPa·m1/2) | Human cortical bone | Composite | 100-230 | 50-150 | 7-30 | 2-12 | Human cancellous bone | Composite | 2-20 | 1.5-38 | 0.1-0.5 | 1.0-1.4 | Hydroxyapatite | Ca10(PO4)6(OH)2 | 500-1000 | 115-200 | 75-103 | 0.7-1.3 | Tricalcium phosphate | Ca3(PO4)2 | 460-680 | 140-154 | 33-90 | 1-1.2 | Bioglass | CaO, SiO2 | 350-500 | 180-200 | 100-120 | 1.9 | Calcium silicate | CaSiO3 | 225-300 | 294 | 46.5 | 2.0 |
|
Mechanical properties of common bioactive ceramic materials[21]
|
|
Functionalization solutions for photocured bioceramics
|
29]; (b)promotion of cell growth[30]; (c)dislocation and distortion caused by doping functional elements[31] ">
|
Functional elements modified bioceramic materials (a)antibacterial drugs[29]; (b)promotion of cell growth[30]; (c)dislocation and distortion caused by doping functional elements[31]
|
Surface modification | Structural applicability | Material applicability | Coating adhesion | Coating thickness | Thermal influence | Influence on mechanical property | Cold spraying[51] | Surface | Metals | Fine | Thick | Medium | Medium | Thermal spraying[52] | Surface | Metals, ceramics | Fine | Thick | Significant | Significant | Physical immersion[53] | Complex structures | Ceramics, polymers | Medium | Medium | Non-significant | Non-significant | Chemical immersion[54] | Complex structures | Metals, polymers | Fine | Thin | Non-significant | Non-significant |
|
Surface modification methods for photocured bioceramics
|
1 | 李晏乐, 岳肖华, 聂真, 等. 生物可吸收材料特点及在骨科中的应用[J]. 中国组织工程研究, 2021, 25 (16): 2612- 2617. | 1 | LI Y L , YUE X H , NIE Z , et al. Characteristics and application of bioabsorbable materials in orthopedics[J]. Chinese Journal of Tissue Engineering Research, 2021, 25 (16): 2612- 2617. | 2 | 纪宏超, 张雪静, 裴未迟, 等. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46 (7): 19- 28. | 2 | JI H C , ZHANG X J , PEI W C , et al. Research progress in ceramic 3D printing technology and material development[J]. Journal of Materials Engineering, 2018, 46 (7): 19- 28. | 3 | CHEN Z , LI Z , LI J , et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39 (4): 661- 687. | 4 | 董少杰, 王旭东, 沈国芳, 等. 生物陶瓷支架的功能改性及应用研究进展[J]. 无机材料学报, 2020, 35 (8): 867- 881. | 4 | DONG S J , WANG X D , SHEN G F , et al. Research progress on functional modifications and applications of bioceramic scaffolds[J]. Journal of Inorganic Materials, 2020, 35 (8): 867- 881. | 5 | CHARLES H. Apparatus for production of three dimensional objects by stereolithography: US4575330A[P]. 1986-03-11. | 6 | GRIFFITH M L , HALLORAN J W . Freeform fabrication of ceramics via stereolithography[J]. Journal of the American Ceramic Society, 2005, 79 (10): 2601- 2608. | 7 | SUN J , BINNER J , BAI J , et al. Effect of surface treatment on the dispersion of nano zirconia particles in non-aqueous suspensions for stereolithography[J]. Journal of the European Ceramic Society, 2019, 39 (4): 1660- 1667. | 8 | DEHURTEVENT M , ROBBERECHT L , HOR NE Z J C , et al. Stereolithography: a new method for processing dental ceramics by additive computer-aided manufacturing[J]. Dental Materials, 2017, 33 (5): 477- 485. | 9 | 焦守政, 齐文, 陈松, 等. 分散剂及粉体粒径对光固化氧化铝陶瓷浆料黏度及制件性能的影响[J]. 硅酸盐通报, 2020, 39 (1): 260- 265. | 9 | JIAO S Z , QI W , CHEN S , et al. Effect of dispersant and powder particle size on viscosity and samples properties of photocured alumina ceramic slurries[J]. Bulletin of the Chinese Ceramic Society, 2020, 39 (1): 260- 265. | 10 | 周伟召, 李涤尘, 周鑫南, 等. 基于光固化的直接陶瓷成形工艺[J]. 塑性工程学报, 2009, 16 (3): 198- 201. | 10 | ZHOU W Z , LI D C , ZHOU X N , et al. Direct fabrication process of ceramics based on stereolithography[J]. Journal of Plasticity Engineering, 2009, 16 (3): 198- 201. | 11 | BORLAF M , SERRA-CAPDEVILA A , COLOMINAS C , et al. Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology[J]. Journal of the European Ceramic Society, 2019, 39 (13): 3797- 3803. | 12 | LI K , ZHAO Z . The effect of the surfactants on the formulation of UV-curable SLA alumina suspension[J]. Ceramics International, 2016, 43 (6): 4761- 4767. | 13 | 高辉, 张光磊, 任书霞. HA生物陶瓷的研究现状及其在医学工程中的应用[J]. 北京生物医学工程, 2007, (6): 655- 658. | 13 | GAO H , ZHANG G L , REN S X . Current status of hydroxyapatite bioceramic and its applications in medical engineering[J]. Beijing Biomedical Engineering, 2007, (6): 655- 658. | 14 | HAN J , ZHAO J , SHEN Z . Zirconia ceramics in metal-free implant dentistry[J]. Advances in Applied Ceramics, 2017, 116 (3): 138- 150. | 15 | LIU S , MO L , BI G , et al. DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slu-rry[J]. Ceramics International, 2021, 47, 21108- 21116. | 16 | TATEIWA T , CLARKE C , WILLIAMS P , et al. Ceramic total hip arthroplasty in the United States: safety and risk issues revisited[J]. American Journal of Orthopedics, 2008, 37 (2): 26- 31. | 17 | 隋育栋. 氧化锆增韧氧化铝复相陶瓷制备工艺的研究进展[J]. 科技创新与应用, 2020, (13): 109- 110. | 17 | SUI Y D . Research progress on preparation technology of zirconia toughened alumina multiphase ceramic[J]. Technology Innovation and Application, 2020, (13): 109- 110. | 18 | 陈欢欢, 朱莉, 宋逸婷, 等. 光固化成型ZTA全瓷冠的机械性能及精度研究[J]. 口腔医学研究, 2021, 37 (6): 554- 558. | 18 | CHEN H H , ZHU L , SONG Y T , et al. Mechanical properties and precision analysis of zirconia toughened alumina crowns fabricated by stereolithography method[J]. Journal of Oral Science Research, 2021, 37 (6): 554- 558. | 19 | ZHENG T , WANG W , SUN J , et al. Development and evaluation of Al2O3-ZrO2 composite processed by digital light 3D printing[J]. Ceramics International, 2020, 46, 8682- 8688. | 20 | WU Z , LIU W , WU H , et al. Research into the mechanical pro-perties, sintering mechanism and microstructure evolution of Al2O3-ZO2 composites fabricated by a stereolithography-based 3D printing method[J]. Materials Chemistry and Physics, 2018, 207, 1- 10. | 21 | HENCH L . Bioceramics[J]. Journal of the American Ceramic Society, 1998, 81 (7): 1705- 1728. | 22 | YUAN H , BLITTERSWIJK C , GROOT K , et al. A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite(HA) implanted in muscle and bone of dogs at different time periods[J]. Journal of Biomedical Materials Research Part A, 2010, 78 (1): 139- 147. | 23 | ZHU Y , ZHU M , HE X , et al. Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties[J]. Acta Biomaterialia, 2013, 9 (5): 6723- 6731. | 24 | CAO Y , SHI T , JIAO C , et al. Fabrication and properties of zirconia/hydroxyapatite composite scaffold based on digital light processing[J]. Ceramics International, 2020, 46 (2): 2300- 2308. | 25 | 王莉丽, 王秀峰, 江红涛. HA-ZrO2生物复合材料的制备[J]. 昆明理工大学学报(理工版), 2009, 34 (6): 15- 18. | 25 | WANG L L , WANG X F , JIANG H T . Fabrication of biomedical ZrO2-based composite ceramic[J]. Journal of Kunming University of Science and Technology(Science and Technology), 2009, 34 (6): 15- 18. | 26 | ZHENG J , ZHANG H , LI X , et al. Effect of ternary particles size distribution on rheology of slurry and microstructure of DLP printed ZTA ceramic[J]. Materials Chemistry and Physics, 2021, 269, 124656. | 27 | SPATH S , DRESCHER P , SEITZ H . Impact of particle size of ceramic granule blends on mechanical strength and porosity of 3D printed scaffolds[J]. Materials, 2015, 8 (8): 4720- 4732. | 28 | SHEN X , ZHANG Y , MA P , et al. Fabrication of magnesium/zinc-metal organic framework on titanium implants to inhibit bacterial infection and promote bone regeneration[J]. Biomate-rials, 2019, 212 (1): 1- 16. | 29 | JENIFER A , SENTHILARASAN K , ARUMUGAM S , et al. Investigation on antibacterial and hemolytic properties of magnesium-doped hydroxyapatite nanocomposite[J]. Chemical Physics Letters, 2021, 771, 138539. | 30 | WANG J , DAI X , PENG Y , et al. Digital light processing strength-strong ultra-thin bioceramic scaffolds for challengeable orbital bone regeneration and repair in situ[J]. Applied Materials Today, 2021, 22, 100889. | 31 | GU Y , ZHANG J , ZHANG X , et al. Three-dimensional printed Mg-doped β-TCP bone tissue engineering scaffolds: effects of magnesium ion concentration on osteogenesis and angiogenesis in vitro[J]. Tissue Engineering and Regenerative Medicine, 2019, 16, 415- 429. | 32 | BIGI A , FORESTI E , GREGORINI R , et al. The role of magnesium on the structure of biological apatites[J]. Calcified Tissue International, 1992, 50 (5): 439- 445. | 33 | BORGES R, RIBEIRO S, MARCHI J, et al. Mechanical characterization of tricalcium phosphate ceramics doped with magnesium[C]//Natal, Brazil: Materials Science Forum, 2014: 454-459. | 34 | O'NEILL E , AWALE G , DANESHMANDI L , et al. The roles of ions on bone regeneration[J]. Drug Discovery Today, 2018, 23 (4): 879- 890. | 35 | TUAN D , ALIREZA K , GABRIELE I , et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges[J]. Composites Part: B, 2018, 143 (1): 172- 196. | 36 | LOWRY N , BROLLY M , HAN Y . Synthesis and characterisa-tion of nanophase hydroxyapatite co-substituted with strontium and zinc[J]. Ceramics International, 2018, 44, 7761- 7770. | 37 | ZHU H , GUO D , SUN L , et al. Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite[J]. Journal of the European Ceramic Society, 2018, 38 (16): 5554- 5562. | 38 | ZHAO R , CHEN S , ZHAO W , et al. A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects[J]. Theranostics, 2020, 10 (4): 1572- 1589. | 39 | UYSAL I , YILMAZ B , EVIS Z . Zn-doped hydroxyapatite in biomedical applications[J]. Journal of the Australian Ceramic Society, 2021, 57 (3): 869- 897. | 40 | ULLAH I , SIDDIQUI M , KOLAWOLE S , et al. Synthesis, cha-racterization and in vitro evaluation of zinc and strontium binary doped hydroxyapatite for biomedical application[J]. Ceramics International, 2020, 46, 14448- 14459. | 41 | GOMES S , VICHERY C , DESCAMPS S , et al. Cu-doping of calcium phosphate bioceramics: from mechanism to the control of cytotoxicity[J]. Acta Biomaterialia, 2018, 65, 462- 464. | 42 | BAZIN T , MAGNAUDEIX A , MAYET R , et al. Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics[J]. Ceramics International, 2021, 47, 13644- 13654. | 43 | 喻小鹏, 吴成铁. 3D打印生物陶瓷功能改进的研究进展[J]. 硅酸盐学报, 2021, 49 (5): 1- 15. | 43 | YU X P , WU C T . Recent development on function improvements of 3D printed bioceramics[J]. Journal of the Chinese Ceramic Society, 2021, 49 (5): 1- 15. | 44 | MACAN J , SIKIRIC M , DELUCA M , et al. Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatite[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111 (1): 1- 12. | 45 | 姚峥杰, 杨迪诚, 李伟, 等. 人工种植牙材料及表面处理的研究进展[J]. 中国材料进展, 2021, 40 (2): 139- 146. | 45 | YAO Z J , YANG D C , LI W , et al. Research progress of dental implant materials and surface processing[J]. Materials China, 2021, 40 (2): 139- 146. | 46 | DAI Z , WANG M , WANG S , et al. Zirconia reinforced trace element Co-doped hydroxyapatite coating[J]. Journal of Inorganic Materials, 2020, 35 (2): 179- 186. | 47 | WANG G . Influence of polydopamine/polylactic acid coating on mechanical properties and cell behavior of 3D-printed calcium si-licate scaffolds[J]. Materials Letters, 2019, 98 (1): 327- 335. | 48 | HAN L , JIANG Y , LV C , et al. Mussel-inspired hybrid coating functionalized porous hydroxyapatite scaffolds for bone tissue regeneration[J]. Colloids and Surfaces B: Biointerfaces, 2020, 275, 128131. | 49 | SUN H , HU C , ZHOU C , et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair[J]. Materials & Design, 2020, 189 (1): 1- 13. | 50 | XIAO D , GUO T , YANG F , et al. In situ formation of nanostructured calcium phosphate coatings on porous hydroxyapatite sca-ffolds using a hydrothermal method and the effect on mesenchymal stem cell behavior[J]. Ceramics International, 2017, 43 (1): 1588- 1596. | 51 | BIASETTO L , ELSAYED H , BONOLLO F , et al. Polymer-derived sphene biocoating on cp-Ti substrates for orthopedic and dental implants[J]. Surface & Coatings Technology, 2016, 301, 140- 147. | 52 | 郑学斌, 谢有桃. 热喷涂生物陶瓷涂层的研究进展[J]. 无机材料学报, 2013, 28 (1): 12- 20. | 52 | ZHENG X B , XIE Y T . Progress on biomedical ceramic coating prepared by thermal spraying[J]. Journal of Inorganic Materials, 2013, 28 (1): 12- 20. | 53 | ZHAO L , WU C T , LIN K L , et al. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds[J]. Bio-medical Materials and Engineering, 2012, 22 (5): 289- 300. | 54 | MESQUITA G J , RAMOS L , DETSCH R , et al. Evaluation of in vitro properties of 3D micro-macro porous zirconia scaffolds coated with 58S bioactive glass using MG-63 osteoblast-like cells[J]. Journal of the European Ceramic Society, 2019, 39 (7): 2545- 2558. | 55 | TAMAI N , MYOUI A , NAKASE T . Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo[J]. Journal of Biomedical Materials Research, 2002, 59 (1): 110- 117. | 56 | 夏琳, 陈德敏. 孔隙率对锶磷灰石多孔陶瓷骨融合能力的影响[J]. 中国临床康复, 2006, (45): 57- 59. | 56 | XIA L , CHEN D M . Influence of total porous volumes of strontium substituted hydroxyapatite porous ceramics on their bone recolonization ability[J]. Chinese Journal of Clinical Rehabilitation, 2006, (45): 57- 59. | 57 | VALLET R , RUIZ H . Bioceramics: from bone regeneration to cancer nanomedicine[J]. Advanced Materials, 2011, 23 (44): 5177- 5218. | 58 | PAREDES C , MARTINEZ V , ELSAYED H , et al. Evaluation of direct light processing for the fabrication of bioactive ceramic scaffolds: effect of pore/strut size on manufacturability and mechanical performance[J]. Journal of the European Ceramic Society, 2021, 41 (1): 892- 900. | 59 | LIM H , HONG S , BYEON S , et al. 3D-printed ceramic bone scaffolds with variable pore architectures[J]. International Journal of Molecular Sciences, 2020, 21 (18): 6942. | 60 | BITTNER S , SMITH B , DIAZ G , et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering[J]. Acta Biomaterialia, 2019, 90, 37- 48. | 61 | EDREIRA E , HAYRAPETYAN A , WOLKE J , et al. Effect of calcium phosphate ceramic substrate geometry on mesenchymal stromal cell organization and osteogenic differentiation[J]. Biofabrication, 2016, 8 (2): 025006. | 62 | LU F , WU R , SHEN M , et al. Rational design of bioceramic sca-ffolds with tuning pore geometry by stereolithography: microstructure evaluation and mechanical evolution[J]. Journal of the European Ceramic Society, 2021, 41 (2): 1672- 1682. | 63 | KOLAN K , THOMAS A , LEU M . In vitro assessment of laser sintered bioactive glass scaffolds with different pore geometries[J]. Rapid Prototyping Journal, 2015, 21 (2): 152- 158. | 64 | 屈华伟, 韩振宇, 卓越, 等. 骨组织工程多孔生物支架设计研究进展[J]. 机械工程学报, 2019, 55 (15): 71- 80. | 64 | QU H W , HAN Z Y , ZHUO Y , et al. Review of the design of porous bio-scaffolds for bone tissue engineering[J]. Journal of Mechanical Engineering, 2019, 55 (15): 71- 80. | 65 | LIANG H , YANG Y , XIE D , et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility[J]. Journal of Materials Science and Technology, 2019, 35 (7): 1284- 1297. | 66 | 时利民, 赵宏生, 闫迎辉, 等. 开孔多孔陶瓷的制备技术[J]. 材料工程, 2005, (12): 57- 61. | 66 | SHI L M , ZHAO H S , YAN Y H , et al. Fabrication technology of open-pore porous ceramics[J]. Journal of Materials Engineering, 2005, (12): 57- 61. | 67 | JIAO C , GU J , CAO Y , et al. Preparation of Al2O3-ZrO2 sca-ffolds with controllable multi-level pores via digital light processing[J]. Journal of the European Ceramic Society, 2020, 40 (15): 6087- 6094. | 68 | 霍存宝, 田小永, 南洋, 等. 多孔陶瓷材料增材制造[J]. 中国建材科技, 2021, 30 (3): 41- 48. | 68 | HUO C B , TIAN X Y , NAN Y , et al. Additive manufacturing of porous ceramic materials[J]. China Building Materials Science & Technology, 2021, 30 (3): 41- 48. | 69 | ZHAO P , HU K , WANG H , et al. Effect of organic fibers addition on digital light processing for Al2O3 porous ceramics[J]. Ceramics International, 2021, 47 (16): 23144- 23152. | 70 | 陈晨, 于景媛, 李强. 梯度多孔载Ag羟基磷灰石陶瓷的制备和性能研究[J]. 硅酸盐通报, 2021, 40 (1): 241- 251. | 70 | CHEN C , YU J Y , LI Q . Preparation and properties of gradient porous Ag loaded hydroxyapatite ceramics[J]. Bulletin of the Chinese Ceramic Society, 2021, 40 (1): 241- 251. |
|
|
|
|