|
|
Research progress on controllable preparation of TiO2/MXene nanocomposites and applications in photocatalysis and electrochemistry |
LI Hua-peng, DONG Xu-sheng, SUN Bin, ZHOU Guo-wei |
1. School of Chemistry and Chemical Engineering, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China; 2. Key Laboratory of Fine Chemicals in Universities of Shandong, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China |
|
|
Abstract TiO2 nanomaterials have many disadvantages,including high photo-generated electron-hole recombination rate, low electron mobility, poor electrical conductivity and low reversible capacity, which have restricted application in the fields of photocatalysis and electrochemistry. MXene (Mn+1XnTx), a new type of two-dimensional transition metal carbides, nitrides, or carbonitrides, has a unique two-dimensional layer structure, excellent electrical conductivity, and high carrier mobility. By introducing MXene into TiO2 nanomaterials to construct the TiO2/MXene nanocomposites, the synergistic effect of MXene and TiO2 can further improve photocatalysis and electrochemistry properties. From the perspective of TiO2 nanomaterials, the latest research progress on the controllable preparation, structural properties, applications in photocatalysis and electrochemistry of zero-dimensional, one-dimensional, and two-dimensional TiO2 with MXene nanocomposites were reviewed. In particular, the construction mechanism of namocomposites and the enhancement mechanism of photocatalysis and electrochemistry properties of TiO2 by MXene were emphasized. The shortcomings of the existing research on preparation of TiO2/MXene composites and its applications in photocatalysis and electrochemistry were analyzed.Furthermore,the future research directions of TiO2/MXene composites from the aspects of optimizing the preparation process,improving the properties and exploring the property enhancement mechanism were also prospected.
|
Received: 17 June 2020
Published: 12 August 2021
|
|
|
|
|
[1] ZHANG W, HE H L, TIAN Y, et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting[J]. Chemical Science, 2019, 10(6): 1664-1670. [2] REN H, YU R B, QI J, et al. Hollow multishelled heterostructured anatase/TiO2 (B) with superior rate capability and cycling performance[J]. Advanced Materials, 2019, 31(10): 1805754. [3] 金嘉玮, 李国臣, 张冶, 等. TiO2薄膜型气敏传感器研究进展[J]. 材料工程, 2020, 48(10): 28-38. JIN J W, LI G C, ZHANG Y, et al. Research progress in TiO2 thin film gas sensor[J]. Journal of Materials Engineering, 2020, 48(10): 28-38. [4] GUO Q, ZHOU C Y, MA Z B, et al. Fundamentals of TiO2 photocatalysis:concepts, mechanisms, and challenges[J]. Advanced Materials, 2019, 31(50): 1901997. [5] LI Y, LIU X, REN D S, et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety[J]. Nano Energy, 2020, 71:104643. [6] TAVAKOLI M M, YADAV P, TAVAKOLI R, et al. Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability[J]. Advanced Energy Materials, 2018, 8(23): 1800794. [7] MIODUNSKA M, MIKOLAJCZYK A, BAJOROWICZ B, et al. Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance[J]. Applied Catalysis B, 2020, 272:118962. [8] ZHANG X L, LI J F, LI J B, et al. 3D TiO2@nitrogen-doped carbon/Fe7S8 composite derived from polypyrrole-encapsulated alkalized MXene as anode material for high performance lithium-ion batteries[J]. Chemical Engineering Journal, 2020, 385:123394-123405. [9] CAI J S, SHEN J L, ZHANG X N, et al. Light-driven sustainable hydrogen production utilizing TiO2 nanostructures:a review[J]. Small Methods, 2019, 3(1): 1800184-1800208. [10] LI Y J, DENG X T, TIAN J, et al. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting[J]. Applied Materials Today, 2018, 13:217-227. [11] LI Y B, SHAO H, LIN Z F, A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19:894-899. [12] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. MXenes:a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. [13] BU F X, ZAGHO M M, IBRAHIM Y, et al. Porous MXenes:synthesis, structures, and applications[J]. Nano Today, 2020, 30:100803. [14] 党阿磊, 方成林, 赵曌, 等. 新型二维纳米材料MXene的制备及在储能领域的应用进展[J]. 材料工程, 2020, 48(4): 1-14. DANG A L, FANG C L, ZHAO Z, et al. Preparation of a new two-dimensional nanomaterial MXene and its application progress in energy storage[J]. Journal of Materials Engineering, 2020, 48(4): 1-14. [15] MA Y J, TANG Q, SUN W Y, et al. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration[J]. Applied Catalysis B, 2020, 270:118856. [16] SUN B, ZHOU G W, GAO T T, et al. NiO nanosheet/TiO2 nanorod-constructed p-n heterostructures for improved photocatalytic activity[J]. Applied Surface Science, 2016, 364:322-331. [17] LAN K, LIU Y, ZHANG W, et al. Uniform ordered two-dimensional mesoporous TiO2 nanosheets from hydrothermal-induced solvent-confined monomicelle assembly[J]. Journal of the American Chemical Society, 2018, 140(11): 4135-4143. [18] WANG H, PENG R, HOOD Z D, et al. Titania composites with 2D transiton metal carbides as photocatalysts for hydrogen production under visible-light irradiation[J]. ChemSusChem, 2016, 9(12): 1490-1497. [19] GAO Y P, WANG L B, ZHOU A G, et al. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity[J]. Materials Letters, 2015, 150:62-64. [20] LUO Q, CHAI B, XU M Q, et al. Preparation and photocatalytic activity of TiO2-loaded Ti3C2with small interlayer spacing[J]. Applied Physics A, 2018, 124(7): 495. [21] YE M H, WANG X, LIU E Z, et al. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst[J]. ChemSusChem, 2018, 11(10): 1606-1611. [22] DU C, WU J, YANG P, et al. Embedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries[J]. Electrochimica Acta, 2019, 295:1067-1074. [23] ZHUANG Y, LIU Y F, MENG X F. Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly[J]. Applied Surface Science, 2019, 496:143647. [24] LIU Y T, ZHANG P, SUN N, et al. Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage[J]. Advanced Materials, 2018, 30(23): 1707334. [25] LV W J, ZHU J F, WANG F, et al. Facile synthesis and electrochemical performance of TiO2 nanowires/Ti3C2 composite[J]. Journal of Materials Science, 2018, 29(6): 4881-4887. [26] PENG C, YANG X F, LI Y H, et al. Hybrids of two-dimensional Ti3C2 and TiO2 exposing (001) facets toward enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6051-6060. [27] PENG C, WEI P, LI X Y, et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide[J]. Nano Energy, 2018, 53:97-107. [28] SHAHZAD A, RASOOL K, NAWAZ M, et al. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine[J]. Chemical Engineering Journal, 2018, 349:748-755. [29] LI Y J, DING L, YIN S J, et al. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as co-catalysts[J]. Nano-Micro Letters, 2020, 12:6. [30] LI Y J, YIN Z H, JI G R, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity[J]. Applied Catalysis B, 2020, 246:12-20. [31] LI Y J, DING L, LIANG Z Q, et al. Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2[J]. Chemical Engineering Journal, 2020, 383:123178. [32] WANG H H, CUI H Z, SONG X J, et al. Facile synthesis of heterojunction of MXenes/TiO2 nanoparticles towards enhanced hexavalent chromium removal[J]. Journal of Colloid and Interface Science, 2020, 561:46-57. [33] AL-ANTAKI A H M, ALHARBI T M D, KELLICI S, et al. Vortex fluidic mediated synthesis of TiO2 nanoparticle/MXene composites[J]. ChemNanoMat, 2019, 6(4): 657-662. [34] GE M Z, CAO C Y, HUANG J Y, et al. A review of one-dimensional TiO2nanostructured materials for environmental and energy applications[J]. Journal of Materials Chemistry A, 2016, 4(18): 6772-6801. [35] LIU Z H, ZHENG Y J, GAO T T, et al. Fabrication of anatase TiO2 tapered tetragonal nanorods with designed (100), (001) and (101) facets for enhanced photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21775-21785. [36] 赵文军, 秦疆洲, 尹志凡, 等. 新型2D MXenes纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736. ZHAO W J, QIN J Z, YIN Z F, et al. 2D MXenes for photocatalysis[J]. Progress in Chemistry, 2019, 31(12): 1729-1736. [37] WANG H, WU Y, XIAO T, et al. Formation of quasi-core-shell In2S3/anatase TiO2@metallic Ti3C2Tx hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance[J]. Applied Catalysis B, 2018, 233:213-225. [38] 严康, 关云峰, 丛野, 等. 溶剂热氧化少层Ti3C2 MXene制备二维TiO2/Ti3C2复合光催化剂[J]. 无机化学学报, 2019, 35(7): 1203-1211. YAN K, GUAN Y F, CONG Y, et al. Preparation of two dimensional TiO2/Ti3C2 photocatalyst by solvothermal oxidation of few-layered Ti3C2 MXene[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(7): 1203-1211. [39] GUPTA S M, TRIPATHI M. A review of TiO2 nanoparticles[J]. Chinese Science Bulletin, 2011, 56(16): 1639-1657. [40] ZHENG Y J, LIU B J, CAO P, et al. Fabrication of flower-like mesoporous TiO2 hierarchical spheres with ordered stratified structure as an anode for lithium-ion batteries[J]. Journal of Materials Science & Technology, 2019, 35(4): 667-673. [41] 齐新, 陈翔, 彭思侃, 等. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20. QI X, CHEN X, PENG S K, et al. Research progress on two dimensional nanomaterials MXenes and their application for Lithium batteries[J]. Journal of Materials Engineering, 2019, 47(12): 10-20. [42] 董旭晟, 赵瑞正, 孙彬, 等. MXenes的表面改性及其在碱金属离子电池中应用的研究进展[J]. 功能材料, 2020, 51(9): 09031-09043. DONG X S, ZHAO R Z, SUN B, et al. Research progresses on surface modifications and applications of MXenes-based nanocomposites in alkali metal ion batteries[J]. Journal of Founctional Materials, 2020, 51(9): 09031-09043. [43] GUO X, ZHANG J Q, SONG J J, et al. MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage[J]. Energy Storage Materials, 2018, 14:306-313. [44] JIAO L, ZHANG C, GENG C N, et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(19): 1900219. [45] ZHU J F, TANG Y, YANG C H, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. Journal of The Electrochemical Society, 2016, 163(5): A785-A791. [46] YANG C, LIU Y, SUN X, et al. In situ construction of hierarchical accordion-like TiO2/Ti3C2 nanohybrid as anode material for lithium and sodium ion batteries[J]. Electrochimica Acta, 2018, 271:165-172. [47] SUN L, XIE J, ZHANG L, et al. 2D black TiO2-x nanoplate-decorated Ti3C2 MXene hybrids for ultrafast and elevated stable lithium storage[J]. FlatChem, 2020, 20:100152. |
|
|
|