|
|
Research progress in ceramic dielectric energy storage materials |
Ying JIANG1,2, Xinchang SHEN1, Limin GUO1,2,*( ), Ke BI1, Xiaohui WANG2, Longtu LI2 |
1 School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 2 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100080, China |
|
|
Abstract In order to better promote the research and development of high energy storage density and high efficiency lead-free ceramic dielectric capacitors, a comprehensive introduction to the energy storage principle and classification of ceramic dielectric energy storage materials was presented, the research progress, main research systems and performance advantages and disadvantages of linear dielectric, ferroelectric, relaxed ferroelectric and antiferroelectric energy storage materials in recent years were comparatively analyzed. The current challenges faced by ceramic energy storage materials and strategies to improve their energy storage were summarized. The current challenges of ceramic energy storage materials and the strategies to improve their energy storage performance were summarized, and their future development and applications were also presented.
|
Received: 04 March 2021
Published: 18 April 2022
|
|
Corresponding Authors:
Limin GUO
E-mail: guolimin@bupt.edu.cn
|
|
|
|
1 | CHENG X B , ZHANG R , ZHAO C Z , et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117 (15): 10403- 10473. | 2 | GONZALEZ A , GOIKOLEA E , BARRENA J A , et al. Review on supercapacitors: technologies and materials[J]. Renewable and Sustainable Energy Reviews, 2016, 58, 1189- 1206. | 3 | 王婳懿, 张继华, 杨传仁, 等. 陶瓷超级电容器的研究进展[J]. 电子元件与材料, 2010, 29 (12): 68- 70. | 3 | WANG H Y , ZHANG J H , YANG C R , et al. Research progress of ceramic supercapacitors[J]. Electronic Components and Materials, 2010, 29 (12): 68- 70. | 4 | MILLER J R , SIMON P . Materials science-electrochemical capacitors for energy management[J]. Science, 2008, 321 (5889): 651- 652. | 5 | LOVE G R . Energy storage in ceramic dielectrics[J]. Journal of the American Ceramic Society, 1990, 73 (2): 323- 328. | 6 | LI J , LI F , XU Z , et al. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency[J]. Adv Mater, 2018, 30 (32): 1802155. | 7 | WANG G , LI J L , ZHANG X , et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity[J]. Energy & Environmental Science, 2019, 12 (2): 582- 588. | 8 | YAO Z H , SONG Z , HAO H , et al. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances[J]. Adv Mater, 2017, 29 (20): 201601727. | 9 | YAN F , SHI Y J , ZHOU X F , et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications[J]. Chemical Engineering Journal, 2020, 417, 127945. | 10 | HAO J G , LI W , ZHAI J W , et al. Progress in high-strain perovskite piezoelectric ceramics[J]. Materials Science and Engineering: R, 2019, 135, 1- 57. | 11 | YANG L T , KONG X , LI F , et al. Perovskite lead-free dielectrics for energy storage applications[J]. Progress in Materials Science, 2019, 102, 72- 108. | 12 | CHRISTEN T , CARLEN M W . Theory of ragone plots[J]. Journal of Power Sources, 2000, 91 (2): 210- 216. | 13 | ZOU K L , DAN Y , XU H J , et al. Recent advances in lead-free dielectric materials for energy storage[J]. Materials Research Bulletin, 2019, 113, 190- 201. | 14 | HAO X H . A review on the dielectric materials for high energy-storage application[J]. Journal of Advanced Dielectrics, 2013, 3 (1): 1- 14. | 15 | WEN R M , GUO J M , ZHAO C L , et al. Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania[J]. Advanced Materials Interfaces, 2018, 5 (3): 1701088. | 16 | YANG L Y , LI X Y , ALLAHYAROV E , et al. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect[J]. Polymer, 2013, 54 (7): 1709- 1728. | 17 | SARANTOPOULOS A , FERREIRO-VILA E , PARDO V , et al. Electronic degeneracy and intrinsic magnetic properties of epitaxial Nb: SrTiO3 thin films controlled by defects[J]. Physical Review Letters, 2015, 115 (16): 166801. | 18 | WILK G D , WALLACE R M , ANTHONY J M . High-kappa gate dielectrics: current status and materials properties considerations[J]. Journal of Applied Physics, 2001, 89 (10): 5243- 5275. | 19 | HUEBNER W, ZHANG S C, GILMORE B, et al. High breakdown strength, multilayer ceramics for compact pulsed power applications[C]//Digest of Technical Papers 12th IEEE International Pulsed Power Conference. Monterey, USA: IEEE, 1999: 1242-1245. | 20 | SHENDE R V , KRUEGER D S , ROSSETTI G A , et al. Strontium zirconate and strontium titanate ceramics for high-voltage applications: synthesis, processing, and dielectric properties[J]. Journal of the American Ceramic Society, 2001, 84 (7): 1648- 1650. | 21 | WANG Z J , CAO M H , YAO Z H , et al. Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics[J]. Ceramics International, 2014, 40 (1): 929- 933. | 22 | HAERTLING G H . Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82 (4): 797- 818. | 23 | SPREITZER M , VALANT M , SUVOROV D . Sodium deficiency in Na0.5Bi0.5TiO3[J]. Journal of Materials Chemistry, 2007, 17 (2): 185- 192. | 24 | ZHENG D G , ZUO R Z , ZHANG D S , et al. Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors[J]. Journal of the American Ceramic Society, 2015, 98 (9): 2692- 2695. | 25 | HILTON A D , RANDALL C A , BARBER D J , et al. TEM studies of Pb(Mg1/3Nb2/3)O3-PbTiO3ferroelectric relaxors[J]. Ferroelectrics, 1989, 93 (1): 379- 386. | 26 | LI F , ZHANG S J , YANG T N , et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals[J]. Nature Communications, 2016, 7 (13807): 1- 7. | 27 | LI F , ZHANG S J , DAMJANOVIC D , et al. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics[J]. Advanced Functional Materials, 2018, 28 (37): 1801504. | 28 | 屈绍波, 杨祖培, 高峰, 等. 弛豫铁电体有序-无序转变理论及进展[J]. 材料工程, 2000, (1): 44- 48. | 28 | QU S B , YANG Z P , GAO F , et al. Theory and progress of order-disorder transition of relaxation ferroelectrics[J]. Journal of Materials Engineering, 2000, (1): 44- 48. | 29 | SAITO Y , TAKAO H , TANI T , et al. Lead-free piezoceramics[J]. Nature, 2004, 432 (7013): 84- 87. | 30 | ZHU C Q , CAI Z M , LUO B C , et al. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties[J]. Journal of Materials Chemistry A, 2020, 8 (2): 683- 692. | 31 | ZHAO P Y , CAI Z M , CHEN L L , et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy[J]. Energy & Environmental Science, 2020, 13 (12): 4882- 4890. | 32 | ZHANG Q F , TONG H F , CHEN J , et al. High recoverable energy density over a wide temperature range in Sr modified (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics with an orthorhombic phase[J]. Applied Physics Letters, 2016, 109 (26): 110- 113. | 33 | JAFFE B . Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element[J]. Proceedings of the IRE, 1961, 49, 1264- 1267. | 34 | ZHANG L , JIANG S L , FAN B Y , et al. Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by spark plasma sintering[J]. Journal of Alloys and Compounds, 2015, 622, 162- 165. | 35 | JO H R , LYNCH C S . A high energy density relaxor antiferroelectric pulsed capacitor dielectric[J]. Journal of Applied Physics, 2016, 119 (2): 024104. | 36 | LIU Z , BAI Y , CHEN X F , et al. Linear composition-dependent phase transition behavior and energy storage performance of tetragonal PLZST antiferroelectric ceramics[J]. Journal of Alloys and Compounds, 2017, 691, 721- 725. | 37 | RANDALL C A , KIM N , KUCERA J P , et al. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics[J]. Journal of the American Ceramic Society, 1998, 81 (3): 677- 688. | 38 | KENJI U, EIJI S, HIROSE T. Dependence of the crystal structure on particle size in barium titanate[J]. 1989, 72(8): 1555-1558. | 39 | PARK M B , CHO N H . Chemical and structural features of the grain boundaries in semiconducting BaTiO3 ceramics prepared from surface-coated powders[J]. Solid State Ionics, 2002, 154, 407- 412. | 40 | TAN Y Q , ZHANG J L , WU Y Q , et al. Unfolding grain size effects in barium titanate ferroelectric ceramics[J]. Scientific Reports, 2015, 5 (9953): 1- 5. | 41 | TAN Y Q , ZHANG J L , WANG C L , et al. Enhancement of electric field-induced strain in BaTiO3 ceramics through grain size optimization[J]. Physica Status Solidi A, 2015, 212 (2): 433- 438. | 42 | ZHAO Z , BUSCAGLIA V , VIVIANI M , et al. Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics[J]. Physical Review B, 2004, 70 (2): 024107. | 43 | SATO Y , HIRAYAMA T , IKUHARA Y . Evolution of nanodomains under DC electrical bias in Pb(Mg1/3Nb2/3) O3-PbTiO3: an in-situ transmission electron microscopy study[J]. Applied Physics Letters, 2012, 100 (17): 1804. | 44 | ZHONG W L , WANG Y G , ZHANG P L , et al. Phenomenological study of the size effect on phase transitions in ferroelectric particles[J]. Physical Review B, 1994, 50 (2): 698- 703. | 45 | ISHIKAWA K , UEMORI T . Surface relaxation in ferroelectric perovskites[J]. Physical Review B, 1999, 60 (17): 11841- 11845. | 46 | POLKING M J , HAN M G , YOURDKHANI A , et al. Ferroelectric order in individual nanometre-scale crystals[J]. Nature Materials, 2012, 11 (8): 700- 709. | 47 | CAI Z M , WANG X H , HONG W , et al. Grain-size-dependent dielectric properties in nanograin ferroelectrics[J]. Journal of the American Ceramic Society, 2018, 101 (12): 5487- 5496. | 48 | ZHU C Q , WANG X H , ZHAO Q C , et al. Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics[J]. Journal of the European Ceramic Society, 2019, 39 (4): 1142- 1148. | 49 | ZHAO Q C , GONG H L , WANG X H , et al. Superior reliability via two-step sintering: barium titanate ceramics[J]. Journal of the American Ceramic Society, 2016, 99 (1): 191- 197. | 50 | ZHU C Q , CAI Z M , GUO L M , et al. Grain size engineered high-performance nanograined BaTiO3-based ceramics: experimental and numerical prediction[J]. Journal of the American Ceramic Society, 2021, 104 (1): 273- 283. | 51 | CHAUDHURI R G , PARIA S . Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112 (4): 2373- 2433. | 52 | JIN L , HE Z , DAMJANOVIC D . Nanodomains in Fe3+-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties[J]. Applied Physics Letters, 2009, 95 (1): 012905. | 53 | CHANDRASEKHAR M , KUMAR P . Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications[J]. Ceramics International, 2015, 41 (4): 5574- 5580. |
|
[1] |
TANG Da-xiu, LIU Jin-yun, WANG Yu-xin, SHANG Jie, LIU Gang, LIU Yi-wei, ZHANG Hui, CHEN Qing-ming, LIU Xiang, LI Run-wei. Research progress in flexible resistive random access memory materials[J]. Journal of Materials Engineering, 2020, 48(7): 81-92. |
|
|
|
|