|
|
Microstructure evolution and mechanical behavior of Ti-22Al-23Nb-1Mo-1Zr alloy ring forging |
Shishuang LIU, Yi ZHOU, Juan LI, Jingxia CAO, Jianming CAI, Xu HUANG( ), Shenglong DAI |
Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China |
|
|
Abstract The microstructure evolution, tensile properties and fracture behavior of five-element Ti2AlNb alloy Ti-22Al-23Nb-1Mo-1Zr (atom fraction/%) ring forging at different solution temperatures of 850, 880, 900 ℃ and 750 ℃ aging treatment (AT) were studied by scanning electron microscope (SEM), transmission electron microscopy (TEM) and mechanical testing machines. The results show that with the increase of solution temperature, the fine lamellar O phase is more solid-dissolved into the B2 phase matrix, the coarse lamellar O phase gradually becomes coarser and the volume fraction of O phase decreases after solution treatment (ST). After ST+AT, a very small amount of fine lamellar O phase precipitates from the B2 phase matrix at a higher solution temperature, coarse lamellar O phase is coarsened, the volume fraction of O phase tends to be the same. The tensile strength of the alloy decreases, while the ductility increases with the increase of solution temperature. The tensile fracture morphology is a quasi cleavage characteristic of typical cleavage and dimple mixed fracture. There are microcracks, slip characteristics and the bending O phase elongated along tensile direction in the longitudinal fracture. Dislocations distribute along the B2/O phase boundary. The small size of the lamellar O phase can effectively reduce the dislocation slip distance, resulting in strong strengthening effect.
|
Received: 25 June 2021
Published: 18 April 2022
|
|
Corresponding Authors:
Xu HUANG
E-mail: 13910936626@139.com
|
|
|
|
|
Sampling diagram
|
|
Heat treatment process routes
|
|
Original microstructures of Ti2AlNb alloy ring forging (a)SEM; (b)TEM; (c)selected area electron diffraction
|
|
Microstructures of Ti2AlNb alloy after different ST (a)850 ℃; (b)880 ℃; (c)900 ℃
|
|
Microstructures of Ti2AlNb alloy after different ST+750 ℃ AT (a)850 ℃; (b)880 ℃; (c)900 ℃
|
|
Microstructure evolution of Ti2AlNb alloy during TMP
|
|
Tensile properties of Ti2AlNb alloy at room temperature
|
|
Tensile fracture morphologies of Ti2AlNb alloy after 850 ℃ ST+750 ℃ AT (a)macro morphology; (b)high magnification image of propagation zone in fig.(a); (c)high magnification image of transient zone in fig.(a)
|
|
Tensile fracture morphologies of Ti2AlNb alloy after 880 ℃ ST+750 ℃ AT (a)macro morphology; (b)high magnification image of propagation zone in fig.(a); (c)high magnification image of transient zone in fig.(a)
|
|
Tensile fracture morphologies of Ti2AlNb alloy after 900 ℃ ST+750 ℃ AT (a)macro morphology; (b)high magnification image of propagation zone in fig.(a); (c)high magnification image of transient zone in fig.(a)
|
|
Longitudinal section near the fracture of tensile sample of Ti2AlNb alloy (a)macro morphology; (b), (c)location of microcrack initiation; (d)slip characteristics; (e)bending lamellar O phase
|
|
Dislocation morphologies of deformation zone on tensile fracture after different ST+AT (a)850 ℃; (b)880 ℃; (c)900 ℃
|
1 | POLLOCK T M . Alloy design for aircraft engines[J]. Nature Materials, 2016, 15 (8): 809- 815. | 2 | 蔡建明, 李臻熙, 马济民, 等. 航空发动机用600 ℃高温钛合金的研究与发展[J]. 材料导报, 2005, 19 (1): 50- 53. | 2 | CAI J M , LI Z X , MA J M , et al. Research and development of 600 ℃ high temperature titanium alloys for aeroengine[J]. Materials Review, 2005, 19 (1): 50- 53. | 3 | KUMPFERT J . Intermetallic alloys based on orthorhombic tita-nium aluminide[J]. Advanced Engineering Materials, 2001, 3 (11): 851- 864. | 4 | BANERJEE D , GOGIA A K , NANDI T K , et al. A new ordered orthorhombic phase in a Ti3Al-Nb alloy[J]. Acta Metallurgica, 1988, 36 (4): 871- 882. | 5 | BANERJEE D . The intermetallic Ti2AlNb[J]. Progress in Materials Science, 1997, 42, 135- 158. | 6 | YANG J L , WANG G F , ZHANG W C , et al. Microstructure evolution and mechanical properties of P/M Ti-22Al-25Nb alloy du-ring hot extrusion[J]. Materials Science & Engineering: A, 2017, 699, 210- 216. | 7 | LI S Q , CHENG Y J , LIANG X B , et al. Recent work on alloy and process development of Ti2AlNb based alloys[J]. Materials Science Forum, 2005, 475/479, 795- 800. | 8 | 冯艾寒, 李渤渤, 沈军. Ti2AlNb基合金的研究进展[J]. 材料与冶金学报, 2011, 10 (1): 30- 38. | 8 | FENG A H , LI B B , SHEN J . Recent advances on Ti2AlNb-based alloys[J]. Journal of Materials and Metallurgy, 2011, 10 (1): 30- 38. | 9 | ZHANG H Y , YAN N , LIU H Y , et al. Phase transformation and microstructure control of Ti2AlNb-based alloys: a review[J]. Journal of Materials Science and Technology, 2020, 80, 203- 216. | 10 | WILLIAMS J C , STARKE E A . Progress in structural materials for aerospace systems[J]. Acta Materialia, 2003, 51 (19): 5775- 5799. | 11 | 刘石双, 仇平, 蔡建明, 等. Ti60钛合金室温保载疲劳性能及断裂行为[J]. 材料工程, 2019, 47 (7): 112- 120. | 11 | LIU S S , QIU P , CAI J M , et al. Dwell fatigue property and fracture behaviour of Ti60 titanium alloy at room temperature[J]. Journal of Materials Engineering, 2019, 47 (7): 112- 120. | 12 | ZHANG H Y , LI C , MA Z Q , et al. Static coarsening behavior of a pre-deformed Ti2AlNb-based alloy during heat treatment[J]. Vacuum, 2019, 169, 1- 8. | 13 | EMURA S , ARAOKA A , HAGIWARA M . B2 grain size refinement and its effect on room temperature tensile properties of a Ti-22Al-27Nb orthorhombic intermetallic alloy[J]. Scripta Materialia, 2003, 48 (5): 629- 634. | 14 | PENG J H , MAO Y , LI S Q , et al. Tensile properties and fracture behavior of Ti2AlNb based alloys at room temperature[J]. Transactions of Nonferrous Metals Society of China, 2000, 10 (3): 378- 381. | 15 | LI S Q , MAO Y , ZHANG J W , et al. Effect of microstructure on tensile properties and fracture behavior of intermetallic Ti2AlNb alloys[J]. Transactions of Nonferrous Metals Society of China, 2002, 12 (4): 582- 586. | 16 | COWEN C J , BOEHLERT C J . Microstructure, creep, and tensile behavior of a Ti-21Al-29Nb (at.%) orthorhombic+B2 alloy[J]. Intermetallics, 2006, 14 (4): 412- 422. | 17 | WANG W , ZENG W D , XUE C , et al. Quantitative analysis of the effect of heat treatment on microstructural evolution and microhardness of an isothermally forged Ti-22Al-25Nb (at.%) orthorhombic alloy[J]. Intermetallics, 2014, 45, 29- 37. | 18 | ZHENG Y P , ZENG W D , LI D , et al. Fracture toughness of the bimodal size lamellar O phase microstructures in Ti-22Al-25Nb (at.%) orthorhombic alloy[J]. Journal of Alloys and Compounds, 2017, 709, 511- 518. | 19 | WANG W , ZENG W D , XUE C , et al. Designed bimodal size lamellar O microstructures in Ti2AlNb based alloy: microstructu-ral evolution, tensile and creep properties[J]. Materials Science & Engineering: A, 2014, 618 (17): 288- 294. | 20 | BOEHLERT C J , MAJUMDAR B S , SEETHARAMAN V , et al. Part Ⅰ. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys[J]. Metallurgical & Materials Transactions A, 1999, 30 (9): 2305- 2323. | 21 | 周毅, 曹京霞, 黄旭, 等. β/B2锻造Ti-22Al-23Nb-2(Mo, Zr)合金的组织演化与综合力学性能[J]. 航空材料学报, 2020, 40 (4): 25- 35. | 21 | ZHOU Y , CAO J X , HUANG X , et al. Microstructure evolution and comprehensive mechanical properties of β/B2 processed Ti-22Al-23Nb-2(Mo, Zr) alloy[J]. Journal of Aeronautical Mate-rials, 2020, 40 (4): 25- 35. | 22 | XUE C , ZENG W D , WANG W , et al. Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment[J]. Mate-rials Science & Engineering: A, 2013, 573 (3): 183- 189. | 23 | XUE C , ZENG W D , WANG W , et al. Coarsening behavior of lamellar orthorhombic phase and its effect on tensile properties for the Ti-22Al-25Nb alloy[J]. Materials Science & Engineering: A, 2014, 611, 320- 325. | 24 | 王邵丽, 曾卫东, 马雄, 等. 固溶温度对Ti-22Al-25Nb合金微观组织的影响[J]. 热加工工艺, 2009, 38 (8): 106- 109. | 24 | WANG S L , ZENG W D , MA X , et al. Effect of solution tempe-rature on microstructure of Ti-22Al-25Nb alloy[J]. Hot Wor-king Technology, 2009, 38 (8): 106- 109. | 25 | GOYAL K , SARDNA N . Phase stability and microstructural evolution of Ti2AlNb alloys-a review[J]. Materials Today: Proceedings, 2021, 41, 951- 968. | 26 | 覃佳栋, 马雄, 史晓强, 等. 固溶处理对Ti-22Al-25Nb合金棒材组织与拉伸性能的影响[J]. 热加工工艺, 2020, 49 (18): 144- 147. | 26 | QIN J D , MA X , SHI X Q , et al. Effects of solution treatment on microstructure and tensile properties of Ti-22Al-25Nb alloy bar[J]. Hot Working Technology, 2020, 49 (18): 144- 147. | 27 | XUE C , ZENG W D , WANG W , et al. The enhanced tensile property by introducing bimodal size distribution of lamellar O for O+B2 Ti2AlNb based alloy[J]. Materials Science & Engineering: A, 2013, 587, 54- 60. | 28 | WANG W , ZENG W D , XUE C , et al. Microstructural evolution, creep, and tensile behavior of a Ti-22Al-25Nb (at%) orthorhombic alloy[J]. Materials Science & Engineering: A, 2014, 603, 176- 184. | 29 | WANG W , ZENG W D , LI D , et al. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition[J]. Materials Science & Engineering: A, 2016, 662, 120- 128. | 30 | BOEHLERT C J . Part Ⅲ. The tensile behavior of Ti-Al-Nb O+Bcc orthorhombic alloys[J]. Metallurgical and Materials Transactions A, 2001, 32 (8): 1977- 1988. | 31 | YUE K , LIU J R , ZHU S X , et al. Origins of different tensile behaviors induced by cooling rate in a near alpha titanium alloy Ti65[J]. Materialia, 2018, 1, 128- 138. | 32 | EMURA S , TSUZAKI K , TSUCHIYA K . Improvement of room temperature ductility for Mo and Fe modified Ti2AlNb alloy[J]. Materials Science & Engineering: A, 2010, 528 (1): 355- 362. | 33 | ZHAO H G , LU B , TONG M , et al. Tensile behavior of Ti-22Al-24Nb-0.5Mo in the range 25 ℃ to 650 ℃[J]. Materials Science & Engineering: A,, 2016, 679, 455- 464. | 34 | TANG F , EMURA S , HAGIWARA M . Tensile properties of tungsten-modified orthorhombic Ti-22Al-20Nb-2W alloy[J]. Scripta Materialia, 2001, 44 (4): 671- 676. |
|
|
|
|