|
|
Research and application progress of 3D printing ceramic casting mould |
Yansong LIU, Wenbo LI, Yongsheng LIU( ), Qingfeng ZENG |
State Key Laboratory of Science and Technology on Thermostructural Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China |
|
|
Abstract Ceramic casting mould is a kind of complex part which is used in the field of investment precision casting to mold the inner and outer structure of casting. With the increase of the complexity of casting, more delicate and complex casting mould is needed to meet the casting demand. However, the traditional ceramic casting method like injection molding has many disadvantages such as high cost, long research and development cycle, and it is difficult to meet the requirements of increasingly complex fine structure molding. As a rapid prototyping method, 3D printing technology can accurately form complex structures. Its application in casting production can not only solve the problem of forming complex structures, but also reduce the production cost and shorten the production cycle. The 3D printing technology in the application of the ceramic mould production was mainly expounded in this article. The research and application of the ceramic mould was introduced from the types and the features of 3D printing ceramic mould material, typical 3D printing mould technology and post-processing method of 3D printing mould technology. The future development of this technology was prospected, it was pointed out that 3D printing technology can effectively solve the molding problem of complex ceramic casting, so as to meet the casting demand of complex hollow structure metal parts.
|
Received: 24 October 2021
Published: 18 July 2022
|
|
Corresponding Authors:
Yongsheng LIU
E-mail: yongshengliu@nwpu.edu.cn
|
|
|
|
21] ">
|
Schematic diagram of phase transition of silica[21]
|
Material | Molecular formula | Melting point/℃ | Moh’s hardness | Density/(g·cm-3) | Expansion coefficient/10-6 K-1 | Corundum | α-Al2O3 | 2050 | 9.0 | 4.6 | 8.6 | Silica glass | SiO2 | ≈1700 | 5.0 | 2.2 | 0.5 | Zircon | ZrSiO4 | 2550 | 7.5 | 4.5 | 4.8 | Silicon carbide | SiC | 2700 | 9.2 | 3.2 | < 6.9 | Cristobalite | SiO2 | 1713 | 6.0 | 2.5 | 10.3 | Magnesia | MgO | 2800 | 6.0 | 3.6 | 14.0 |
|
Properties of mineralizers used in silica based ceramic core[25-26]
|
Type | Advantage | Shortcoming | Reference | Silica-based ceramic core | Low thermal expansion coefficient, good thermal stability and chemical stability, easy to be removed | Low high temperature strength | [14-16] | Alumina-based ceramic core | Good chemical stability, high temperature creep resistance, high strength | Difficult to be removed and sintered | [40-42] |
|
Performance comparison of silica-based ceramic cores and alumina-based ceramic cores
|
58] ">
|
Viscosity as a function of the shear rate for different loading volume fractions of PSZ[58]
|
17] (a)STL file; (b)sintered body; (c)green body; (d)cross-section of green body of ICCM with core and shell mold at the layer number 630th ">
|
Integrally cored ceramic mold (ICCM) for superalloy turbine airfoil with complex internal hollow structure fabricated using ceramic stereolithography (CerSLA)[17] (a)STL file; (b)sintered body; (c)green body; (d)cross-section of green body of ICCM with core and shell mold at the layer number 630th
|
62] (a)casting; (b)single crystal blade ">
|
Casting and casting blades[62] (a)casting; (b)single crystal blade
|
64]; (b)SiO2 ceramic core[65] ">
|
Ceramic parts and ceramic core fabricated with optimized SLS parameters and posttreatment process (a)Al2O3-SiO2 ceramic parts[64]; (b)SiO2 ceramic core[65]
|
67] (a)printing process; (b)3D software design drawing; (c)green body ">
|
Photographs of the complex-shaped alumina ceramic cores fabricated by an inorganic binder[67] (a)printing process; (b)3D software design drawing; (c)green body
|
70] ">
|
Casting mould prepared by DIW and metal casting[70]
|
72] (a)vacuum; (b)argon ">
|
Influence of holding time on flexural strength of as-sintered ceramics after debinding[72] (a)vacuum; (b)argon
|
1 | 姜不居. 熔模精密铸造[M]. 北京: 机械工业出版社, 2004: 159- 187. | 1 | JIANG B J . Investment precision casting[M]. Beijing: China Machine Press, 2004: 159- 187. | 2 | 沈昀, 郑功, 冯辰铭. 熔模精密铸造技术研究进展[J]. 精密成形工程, 2019, 11 (1): 54- 62. | 2 | SHEN Y , ZHENG G , FENG C M . Research progress of investment casting technology[J]. Journal of Netshape Forming Engineering, 2019, 11 (1): 54- 62. | 3 | 洪海春, 邵春艳, 徐继福, 等. 3D打印砂型性能影响因素研究[J]. 铸造技术, 2021, 42 (8): 688- 690. | 3 | HONG H C , SHAO C Y , XU J F , et al. Study on the influencing factors of 3D printing sand mold performance[J]. Foundry Technology, 2021, 42 (8): 688- 690. | 4 | 张景宜. 特种铸造工艺方法[J]. 世界有色金属, 2021, (9): 141- 142. | 4 | ZHANG J Y . Special casting process[J]. World Nonferrous Metals, 2021, (9): 141- 142. | 5 | 宋浩, 韩冬, 赵军, 等. 钛合金熔模精密铸造技术的发展现状[J]. 铸造, 2020, 69 (12): 1304- 1311. | 5 | SONG H , HAN D , ZHAO J , et al. Development status of Ti alloy investment casting technology[J]. Foundry, 2020, 69 (12): 1304- 1311. | 6 | 郑翠侠. 大尺寸空心叶片精密铸造工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. | 6 | ZHENG C X. Studies on the precision casting process of the large-size hollow blades[D]. Harbin: Harbin Institute of Technology, 2016. | 7 | 邢政鹏, 朱杉, 孙增光, 等. 工业陶瓷精密加工技术的研究现状[J]. 现代技术陶瓷, 2020, 41 (5): 331- 340. | 7 | XING Z P , ZHU S , SUN Z G , et al. Research progress in precision processing technologies for industrial ceramics[J]. Advanced Ceramics, 2020, 41 (5): 331- 340. | 8 | GRIFFITH M L , HALLORAN J W . Freedom of ceramics via stereolithography[J]. Journal of American Ceramic Society, 1996, 79 (10): 2601- 2608. | 9 | LIN L F , WU H D , HUANG Z Q , et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions[J]. Materials Chemistry and Physics, 2022, 275, 125243. | 10 | HE R J , ZHOU N P , ZHANG K Q , et al. Progress and challenges towards additive manufacturing of SiC ceramic[J]. Journal of Advanced Ceramics, 2021, 10 (4): 637- 674. | 11 | ZHANG C , LUO Z Q , LIU C B , et al. Dimensional retention of photocured ceramic units during 3D printing and sintering processes[J]. Ceramics International, 2020, 47 (8): 11097- 11108. | 12 | 裘芸寧, 胡可辉, 吕志刚. 基于立体光刻增材制造技术的陶瓷成形方法[J]. 精密成形工程, 2020, 12 (5): 117- 121. | 12 | QIU Y N , HU K H , LYU Z G . Ceramic forming method based on stereolithography additive manufacturing[J]. Journal of Netshape Forming Engineering, 2020, 12 (5): 117- 121. | 13 | CHEN Z W , LI Z Y , LI J J , et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2018, 39 (4): 661- 687. | 14 | ZHOU W Z , LI D C , CHEN Z W , et al. Direct fabrication of an integral ceramic mould by stereolithography[J]. Proceedings of the Institution of Mechanical Engineers Part B, 2010, 224 (2): 237- 243. | 15 | 周伟召, 李涤尘, 陈张伟, 等. 陶瓷浆料光固化快速成形特性研究及其工程应用[J]. 航空制造技术, 2010, (8): 38- 42. | 15 | ZHOU W Z , LI D C , CHEN Z W , et al. Curing behaviors of ceramic suspension in stereolithography and its engineering applications[J]. Aeronautical Manufacturing Technology, 2010, (8): 38- 42. | 16 | XU Z L , ZHONG J W , SU X L , et al. Experimental study on mechanical properties of silica-based ceramic core for directional solidification of single crystal superalloy[J]. Ceramics International, 2018, 44 (1): 394- 401. | 17 | BAE C J , KIM D , HALLORAN J W . Mechanical and kinetic studies on the refractory fused silica of integrally cored ceramic mold fabricated by additive manufacturing[J]. Journal of the European Ceramic Society, 2019, 39 (2/3): 618- 623. | 18 | 罗凌, 芦刚, 严青松, 等. 氧化铝基陶瓷型芯溶失性的研究进展[J]. 特种铸造及有色合金, 2021, 41 (3): 305- 309. | 18 | LUO L , LU G , YAN Q S , et al. Research progress in alumina-based ceramic cores' dissolution[J]. Special Casting & Nonferrous Alloys, 2021, 41 (3): 305- 309. | 19 | 王飞, 李飞, 刘河洲, 等. 高温合金空心叶片用陶瓷型芯的研究进展[J]. 航空制造技术, 2009, (19): 60- 64. | 19 | WANG F , LI F , LIU H Z , et al. Review of ceramic core for superalloy hollow blade[J]. Aeronautical Manufacturing Technology, 2009, (19): 60- 64. | 20 | 姚仲成. 空心叶片用氧化硅基陶瓷型芯性能改进研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. | 20 | YAO Z C. Study on the improvement of the properties of silica oxide ceramic cores for hollow blades[D]. Harbin: Harbin Institute of Technology, 2016. | 21 | 杨嘉楠. 硅基陶瓷型芯的制备及性能研究[D]. 南京: 东南大学, 2017. | 21 | YANG J N. Study on the preparation and performance of silicon based ceramic core[D]. Nanjing: Southeast University, 2017. | 22 | KAZEMI A , FAGHIHI-SANI M A , ALIZADEH H R . Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting[J]. Journal of the European Ceramic Society, 2013, 33 (15/16): 3397- 3402. | 23 | CHAO C H , LU H Y . Optimal composition of zircon-fused silica ceramic cores for casting superalloys[J]. Journal of the American Ceramic Society, 2002, 85 (4): 773- 779. | 24 | 陈昊, 李鑫, 牛书鑫, 等. 氧化硅/莫来石陶瓷型芯的析晶行为及性能研究[J]. 人工晶体学报, 2020, 49 (5): 902- 907. | 24 | CHEN H , LI X , NIU S X , et al. Crystallization behavior and properties of silica/mullite ceramic cores[J]. Journal of Synthetic Crystals, 2020, 49 (5): 902- 907. | 25 | 范红娜. 空心叶片用氧化硅—莫来石陶瓷型芯制备与性能研究[D]. 天津: 天津大学, 2014. | 25 | FAN H N. Study on preparation and property of silica-mullite ceramic cores used for hollow blades[D]. Tianjin: Tianjin University, 2014. | 26 | 占红星, 芦刚, 严青松, 等. SiO2基陶瓷型芯高温性能强化的研究现状[J]. 特种铸造及有色合金, 2020, 40 (7): 749- 753. | 26 | ZHAN H X , LU G , YAN Q S , et al. Research status of high temperature performance enhancement of SiO2 based ceramic core[J]. Special Casting & Nonferrous Alloys, 2020, 40 (7): 749- 753. | 27 | KAZEMI A , FAGHIHI-SANI M A , NAYYERI M J , et al. Effect of zircon content on chemical and mechanical behavior of silica-based ceramic cores[J]. Ceramics International, 2014, 40 (1): 1093- 1098. | 28 | 李鑫, 刘晓光, 唐定中, 等. 硅酸锆粒度对氧化硅基型芯性能的影响[J]. 人工晶体学报, 2013, 42 (5): 911- 914. | 28 | LI X , LIU X G , TANG D Z , et al. Influence of particle size of zirconium silicate on the properties of silica-based ceramic core[J]. Journal of Synthetic Crystals, 2013, 42 (5): 911- 914. | 29 | WILSON P J , BLACKBURN S , GREENWOOD R W , et al. The role of zircon particle size distribution, surface area and contamination on the properties of silica-zircon ceramic materials[J]. Journal of the European Ceramic Society, 2011, 31 (9): 1849- 1855. | 30 | LIANG J J , LIN Q H , ZHANG X , et al. Effects of alumina on cristobalite crystallization and properties of silica-based ceramic cores[J]. Journal of Materials Science & Technology, 2017, 33 (2): 204- 209. | 31 | 王丽丽, 李嘉荣, 唐定中. 矿化剂氧化铝的形貌对二氧化硅基陶瓷型芯性能的影响[J]. 航空材料学报, 2015, 35 (1): 8- 12. | 31 | WANG L L , LI J R , TANG D Z . Effects of alumina particles morphology on properties of silica-based ceramic cores[J]. Journal of Aeronautical Materials, 2015, 35 (1): 8- 12. | 32 | WANG L Y , HON M H . The effect of cristobalite seed on the crystallization of fused-silica based ceramic core—a kinetic study[J]. Ceramics International, 1995, 21 (3): 187- 193. | 33 | 刘利俊, 刘超, 玄伟东, 等. 方石英的含量对氧化硅陶瓷型芯性能的影响[J]. 铸造, 2019, 68 (6): 634- 639. | 33 | LIU L J , LIU C , XUAN W D , et al. Effects of cristobalite content on properties of silica ceramic cores[J]. Foundry, 2019, 68 (6): 634- 639. | 34 | 占红星, 芦刚, 严青松, 等. 预加方石英粒度对SiO2基陶瓷型芯性能的影响[J]. 特种铸造及有色合金, 2021, 41 (1): 51- 54. | 34 | ZHAN H X , LU G , YAN Q S , et al. Effects of particle size of pre-added cristobalite on the properties of SiO2 based ceramic cores[J]. Special Casting & Nonferrous Alloys, 2021, 41 (1): 51- 54. | 35 | KIM Y H , YEO J G , LEE J S , et al. Influence of silicon carbide as a mineralizer on mechanical and thermal properties of silica-based ceramic cores[J]. Ceramics International, 2016, 42 (13): 14738- 14742. | 36 | 牛书鑫, 许西庆, 李鑫, 等. 石英纤维增强硅基陶瓷型芯制备与性能[J]. 中国陶瓷, 2020, 56 (9): 31- 35. | 36 | NIU S X , XU X Q , LI X , et al. Preparation and properties of silica-based ceramic cores reinforced by silica fibers[J]. China Ceramics, 2020, 56 (9): 31- 35. | 37 | LU Z L , FAN Y X , MIAO K , et al. Effects of adding aluminum oxide or zirconium oxide fibers on ceramic molds for casting hollow turbine blades[J]. International Journal of Advanced Manufacturing Technology, 2014, 72 (5/8): 873- 880. | 38 | 饶文杰. Al2O3纤维增强硅基陶瓷型芯制备工艺及强化行为研究[D]. 南昌: 南昌航空大学, 2016. | 38 | RAO W J. Study on preparation techniques and strengthen behavior of Al2O3 fiber reinforced silica based ceramic cores[D]. Nanchang: Nanchang Aeronautic University, 2016. | 39 | 郭新力, 娄延春, 黄国华, 等. 强化处理对硅基陶瓷型芯高温性能的影响[J]. 铸造, 2012, 61 (11): 1299- 1302. | 39 | GUO X L , LOU Y C , HUANG G H , et al. Effect of strengthening treatment on high temperature properties of silica-based ceramic core[J]. Foundry, 2012, 61 (11): 1299- 1302. | 40 | 贺靠团. 定向硅基型芯生产使用中的重点问题[J]. 材料工程, 1994, (2): 44- 45. | 40 | HE K T . Key issues in the production and use of oriented silicon-based cores[J]. Journal of Materials Engineering, 1994, (2): 44- 45. | 41 | 龙永成. 硅基陶瓷型芯烧结工艺及成分设计[D]. 长沙: 中南大学, 2011. | 41 | LONG Y C. Sintering process and composition design of silicon-based ceramic core[D]. Changsha: Central South University, 2011. | 42 | 康海峰, 李飞, 赵彦杰, 等. 高温合金空心叶片精密铸造用陶瓷型芯与型壳的研究现状[J]. 材料工程, 2013, (8): 85- 91. | 42 | KANG H F , LI F , ZHAO Y J , et al. Research status on ceramic cores and shells for superalloy hollow blades investment casting[J]. Journal of Materials Engineering, 2013, (8): 85- 91. | 43 | 曹腊梅. 国外定向和单晶空心叶片用型芯的工艺特点[J]. 材料工程, 1995, (5): 20- 21. | 43 | CAO L M . The processing characters of ceramics core used for directional and single crystal blades[J]. Journal of Materials Engineering, 1995, (5): 20- 21. | 44 | 薛明, 曹腊梅. 莫来石对氧化铝基陶瓷型芯的高温抗变形能力的影响[J]. 材料工程, 2006, (6): 33- 34. | 44 | XUE M , CAO L M . Effect of mullite on high temperature anti-deforming capability of alumina-based ceramic core[J]. Journal of Materials Engineering, 2006, (6): 33- 34. | 45 | 李风光, 唐世艳, 刘富初, 等. 淀粉对氧化铝基陶瓷型芯性能的影响[J]. 航空材料学报, 2016, 36 (6): 86- 91. | 45 | LI F G , TANG S Y , LIU F C , et al. Effects of starch on properties of alumina-based ceramic cores[J]. Journal of Aeronautical Materials, 2016, 36 (6): 86- 91. | 46 | 芦刚, 查军辉, 严青松, 等. PA66纤维含量对多孔铝基陶瓷型芯气孔率的影响[J]. 材料工程, 2020, 48 (7): 170- 175. | 46 | LU G , ZHA J H , YAN Q S , et al. Influence of PA66 fiber content on porosity of porous alumina based ceramic core[J]. Journal of Materials Engineering, 2020, 48 (7): 170- 175. | 47 | 刘孝福, 郭新力, 李彪, 等. 氧化铝基陶瓷型芯性能研究[C]//第十四届中国铸造活动周论文集. 合肥: 中国机械工程学会铸造学会, 2020: 10. | 47 | LIU X F, GUO X L, LI B, et al. Study on properties of alumina-based ceramic core[C]// 14th National Foundry Annual Conference. Hefei: CMES, 2020: 10. | 48 | 杨治刚, 赵志佳, 余建波, 等. 硅树脂添加量对氧化铝基陶瓷型芯性能的影响[J]. 稀有金属材料与工程, 2020, 49 (2): 515- 519. | 48 | YANG Z G , ZHAO Z J , YU J B , et al. Effect of silicone resin content on the properties of Al2O3-based ceramic cores[J]. Rare Metal Materials and Engineering, 2020, 49 (2): 515- 519. | 49 | 李彪, 娄延春, 于波, 等. 添加锆英粉矿化剂的氧化铝基陶瓷型芯试验研究[J]. 铸造, 2020, 69 (8): 853- 860. | 49 | LI B , LOU Y C , YU B , et al. Experimental study of alumina-based ceramic cores mineralized by zircon powder[J]. Foundry, 2020, 69 (8): 853- 860. | 50 | 覃业霞, 张睿, 杜爱兵, 等. 粉料粒度对氧化铝基陶瓷型芯材料性能的影响[J]. 稀有金属材料与工程, 2007, 36, 711- 713. | 50 | QIN Y X , ZHANG R , DU A B , et al. Effect of particle size on properties of alumina-based ceramic cores[J]. Rare Metal Materials and Engineering, 2007, 36, 711- 713. | 51 | 徐智清, 卓育华. 影响氧化镁陶瓷芯性能的几个因素[J]. 铸造, 1996, 45 (10): 11- 14. | 51 | XU Z Q , ZHUO Y H . Factors influencing properties of magnesia ceramic core[J]. Foundry, 1996, 45 (10): 11- 14. | 52 | 赵红亮, 楼琅洪, 胡壮麒. Al2O3/SiO2纳米复合陶瓷型芯材料的制备与性能[J]. 材料研究学报, 2002, 16 (6): 650- 654. | 52 | ZHAO H L , LOU L H , HU Z Q . Preparation and properties of Al2O3/SiO2 ceramic core nano-composites[J]. Chinese Journal of Materials Research, 2002, 16 (6): 650- 654. | 53 | 杜金菊, 李炜. 氧化铝基纳米复相陶瓷型芯制备与性能研究[J]. 华南师范大学学报(自然科学版), 2011, 43 (4): 79- 82. | 53 | DU J J , LI W . Study on the preparation and properties of in-situ synthesized alumina-based ceramic core nano composites[J]. Journal of South China Normal University (Natural Science Edition), 2011, 43 (4): 79- 82. | 54 | 刘雨, 陈张伟. 陶瓷立体光刻3D打印技术研究进展[J]. 材料工程, 2020, 48 (9): 1- 12. | 54 | LIU Y , CHEN Z W . Research progress in photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering, 2020, 48 (9): 1- 12. | 55 | RASAKI S A , XIONG D Y , XIONG S F , et al. Photopolymerization-based additive manufacturing of ceramics: a systematic review[J]. Journal of Advanced Ceramics, 2021, 10 (3): 442- 471. | 56 | LICCIULLI A , CORCIONE C E , GRECO A , et al. Laser stereolithography of ZrO2 toughened Al2O3[J]. Journal of the European Ceramic Society, 2004, 24 (15/16): 3769- 3777. | 57 | HINCZEWSKI C , CORBEL S , CHARTIER T . Ceramic suspensions suitable for stereolithography[J]. Journal of the European Ceramic Society, 1998, 18 (6): 583- 590. | 58 | WANG L , LIU X D , WANG G , et al. Partially stabilized zirconia moulds fabricated by stereolithographic additive manufacturing via digital light processing[J]. Materials Science & Engineering A, 2020, 770, 138537. | 59 | 顾凯杰. 氧化锆陶瓷浆料制备及其立体光刻增材制造研究[D]. 南京: 南京航空航天大学, 2019. | 59 | GU K J. Research on zirconia slurry preparation and process of zirconia ceramics fabricated via DLP additive manufacturing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. | 60 | 郝婷婷. 可见LED立体光刻陶瓷悬浮液性能的研究[D]. 北京: 北京化工大学, 2020. | 60 | HAO T T. Properties studies of ceramic suspensions under visible LED light source[D]. Beijing: Beijing University of Chemical Technology, 2020. | 61 | HALLORAN J W , TOMECKOVA V , GENTRY S , et al. Photopolymerization of powder suspensions for shaping ceramics[J]. Journal of the European Ceramic Society, 2010, 31 (14): 2613- 2619. | 62 | 胡可辉, 吕志刚, 陆宽, 等. 复杂陶瓷型芯增材制造及浇注工艺验证[J]. 机械工程学报, 2021, 57 (3): 227- 234. | 62 | HU K H , LU Z G , LU K , et al. Additive manufacturing of complex ceramic cores and verification of casting process[J]. Journal of Mechanical Engineering, 2021, 57 (3): 227- 234. | 63 | 程迪. Al2O3陶瓷零件的SLS成形及后处理工艺研究[D]. 武汉: 华中科技大学, 2007. | 63 | CHENG D. Study on selective laser sintering of alumina parts and post process[D]. Wuhan: Huazhong University of Science and Technology, 2007. | 64 | LI C H , HU L , ZOU Y , et al. Fabrication of Al2O3-SiO2 ceramics through combined selective laser sintering and SiO2-sol infiltration[J]. International Journal of Applied Ceramic Technology, 2019, 17 (1): 255- 263. | 65 | ZHENG W , WU J M , CHEN S , et al. Fabrication of high-performance silica-based ceramic cores through selective laser sintering combined with vacuum infiltration[J]. Additive Manufacturing, 2021, 48, 102396. | 66 | ZHAO H P , YE C S , FAN Z T , et al. 3D printing of CaO-based ceramic core using nanozirconia suspension as a binder[J]. Journal of the European Ceramic Society, 2017, 37 (15): 5119- 5125. | 67 | HUANG S J , YE C S , ZHAO H P , et al. Additive manufacturing of thin alumina ceramic cores using binder-jetting[J]. Additive Manufacturing, 2019, 29, 100802. | 68 | SACHES E M , CIMA M J , CORNIE J . Three-dimensional printing: rapid tooling and prototypes directly from a CAD model[J]. Journal of Engineering for Industry—Transactions of the ASME, 1992, 114 (4): 481- 488. | 69 | TANG S Y , YANG L , LI G J , et al. 3D printing of highly-loaded slurries via layered extrusion forming: parameters optimization and control[J]. Additive Manufacturing, 2019, 28, 546- 553. | 70 | 毛健. 面向模壳型芯一体化增材制造技术的铸型材料研究[D]. 兰州: 兰州理工大学, 2020. | 70 | MAO J. Research on the mold material for the manufacturing technology of the integral additive of mold shell and core[D]. Lanzhou: Lanzhou University of Technology, 2020. | 71 | WEI Q , ZHONG J W , XU Z L , et al. Microstructure evolution and mechanical properties of ceramic shell moulds for investment casting of turbine blades by selective laser sintering[J]. Ceramics International, 2018, 44 (11): 12088- 12097. | 72 | LI H , LIU Y S , LIU Y S , et al. Influence of debinding holding time on mechanical properties of 3D-printed alumina ceramic cores[J]. Ceramics International, 2020, 47 (4): 4884- 4894. | 73 | 李和祯. 立体光刻增材制造氧化锆陶瓷的宏微观缺陷及其调控[D]. 北京: 北京科技大学, 2021. | 73 | LI H Z. Investigation and manipulating macro-microscale defects in zirconia ceramics fabricated by stereolithography additive[D]. Beijing: University of Science and Technology Beijing, 2021. | 74 | 屈银虎, 李涤尘, 邢建东, 等. 基于SLA的快速精密铸造型壳制备工艺的研究[J]. 特种铸造及有色合金, 2006, 26 (10): 654- 656. | 74 | QU Y H , LI D C , XING J D , et al. Preparation of shell mold for rapid-precision casting based on the SLA[J]. Special Casting & Nonferrous Alloys, 2006, 26 (10): 654- 656. |
|
|
|
|