|
|
Research progress of new composite nanomaterials for photocatalytic degradation in dye wastewater |
Mingtai ZHANG1, Shaobin YU1, Xicheng LI1, Cuimin FENG1, Mengtong SHI1, Changzheng WANG1,*( ), Qiang WANG2 |
1 Key Laboratory of Urban Storm Water System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing 100044, China 2 Laboratory for Micro-sized Functional Materials College of Elementary Education, Capital Normal University, Beijing 100048, China |
|
|
Abstract Photocatalytic technology is an effective way to solve the two major problems of environmental problems and energy crisis in today's human society. Semiconductor materials were favored in early research. However, a single semiconductor photocatalyst has disadvantages such as poor response to visible light and easy recombination of electron-hole pairs. Photocatalytic technology has low efficiency in the application of dye wastewater degradation. Therefore, researchers have conducted in-depth studies on the new composite nanomaterials as photocatalysts to degrade dye wastewater. The research progress and main results of three new composite nanomaterials of graphene, metal organic framework, and carbon quantum dots for photocatalytic degradation of pollutants in dye wastewater were introduced in this article. According to the idea of design and upgrading of composite nanomaterials, the preparation methods of some new composite nanomaterials were briefly described, and the degradation efficiency of target pollutants was analyzed. By summarizing the performance of different photocatalytic materials to degrade pollutants in water, the future development trend was prospected. The future development trend and research focus of new composite nanomaterials in the direction of photocatalysis are targeted treatment of wastewater and industrialization.
|
Received: 03 December 2020
Published: 18 July 2022
|
|
Corresponding Authors:
Changzheng WANG
E-mail: changzhwang@163.com
|
|
|
|
|
Schematic diagram of photocatalytic reaction mechanism
|
|
New photocatalytic materials (a)flake graphene; (b)MOFs; (c)MOF@graphene; (d)carbon quantum dots
|
22] ">
|
SEM images of TiO2 (a), GO(b), TiO2/GO nanocomposites(c) and mechanism diagram of photocatalytic degradation of methylene blue by TiO2/GO nanocomposite(d)[22]
|
Nanocomposite material | Degraded pollutant | Degradation rate/% | Degradation time/min | Reference | ZnO/graphene | MB | 100 | 180 | [20] | TiO2/graphene | CV | 98.17 | 105 | [21] | TiO2/GO | MB | 98.67 | 45 | [22] | GO-TiO2-ZnO | MO | 44.2 | 165 | [23] | ZnFe2O4@rGO | MB | 94.2 | 60 | [25] | rGO/ZnFe2O4 | MB | 100 | 120 | [26] | rGO-ZnO-TiO2 | CV | 87.06 | 20 | [27] | Porous graphene-SrTiO3 | MB | 92 | 120 | [28] |
|
Photocatalytic performance of new graphene composite nanomaterials
|
38] ">
|
SEM images of MOF-5(a), MOF-74(b), ZIF-8(c), ZnO/CMOF-5(d), ZnO/CMOF-74(e) and ZnO/CZIF-8(f)[38]
|
Nanocomposite material | Degraded pollutant | Degradation rate/% | Degradation time/min | Reference | CuCr2O4/CuO | MB | 95 | 120 | [36] | CdS/g-C3N4/MOF | RhB | 90 | 90 | [37] | ZnO/CMOF-5 | MB | 99 | 360 | [38] | ZIF-8/Fe2O3 nanofibers | RR198 | 94 | 90 | [39] | ZnO/C | MB | 100 | 100 | [40] | N-doped Cu2O/C | MO | 90 | 180 | [41] | Ag3PO4/Fe-MIL-88-NH2 | RhB | 100 | 120 | [42] |
|
Photocatalytic performance of MOFs new composite nanomaterials
|
52] ">
|
TEM images of TiO2 (a), NP-CQDs/TiO2 (b) and photocatalytic performance of NP-CQDs/TiO2, TiO2 and NP-CQDs(c)[52]
|
Nanocomposite material | Degraded pollutant | Degradation rate/% | Degradation time/min | Reference | CQDs/Bi2WO6 | MO | 94.10 | 120 | [47] | 5%CQDs/meso-Ti-450 | MB | 98.00 | 60 | [48] | CQDs/TiO2 | RhB | 74.08 | 120 | [49] | N-CDs/P25 | RhB | 100.00 | 90 | [50] | S, N-CQDs/TiO2 | AR88 | 77.29 | 180 | [51] | NP-CQDs/TiO2 | MB | 100.00 | 15 | [52] | CQDs/Ag/Ag2O | MB | 95.00 | 80 | [53] |
|
Photocatalytic performance of CQDs new composite nanomaterials
|
|
Photocatalytic performance of some new composite nanomaterials
|
1 | 位海棠, 张洞铭, 吕天平, 等. 可见光降解有机污染物催化剂研究进展[J]. 功能材料, 2019, 50 (5): 5033- 5041. | 1 | WEI H T , ZHANG D M , LV T P , et al. Research progress of visible light degradation catalysts for organic pollutants[J]. Functional Materials, 2019, 50 (5): 5033- 5041. | 2 | ROY R . Ceramics by the solution-sol-gel route[J]. Science, 1987, 238 (4834): 1664- 1669. | 3 | 邱庆龄. TiO2基复合光催化剂的制备及其在污水处理中的应用研究[J]. 功能材料, 2019, 50 (10): 10173- 10177. | 3 | QIU Q L . Preparation of TiO2-based composite photocatalyst and its application in wastewater treatment[J]. Functional Materials, 2019, 50 (10): 10173- 10177. | 4 | 赵文金, 侯慧杰, 刘萍, 等. 负载型TiO2光催化在污水处理中的应用[J]. 功能材料, 2019, 50 (1): 1035- 1046. | 4 | ZHAO W J , HOU H J , LIU P , et al. Application of supported TiO2 photocatalysis in sewage treatment[J]. Functional Materials, 2019, 50 (1): 1035- 1046. | 5 | RAHUL S , VENUGOPAL J R , SEERAM R . Synthesis and applications of multifunctional composite nanomaterials[J]. International Journal of Mechanical & Materials Engineering, 2014, 9 (1): 25. | 6 | NIE Z , PETUKHOVA A , KUMACHEVA E . Properties and emerging applications of self-assembled structures made from inorganic nanoparticles[J]. Nature Nanotechnology, 2010, 5 (1): 15- 25. | 7 | 李锡鹏. 光催化处理染料废水研究进展[J]. 广州化工, 2020, 48 (1): 30- 32. | 7 | LI X P . Research progress of photocatalytic treatment of dye wastewater[J]. Guangzhou Chemical Industry, 2020, 48 (1): 30- 32. | 8 | 韩聪, 李峰, 郭芳. 纳米TiO2光催化技术在环境污染控制中的应用[J]. 中国资源综合利用, 2019, 37 (8): 181- 183. | 8 | HAN C , LI F , GUO F . Application of nano-TiO2 photocatalysis technology in environmental pollution control[J]. China Resources Comprehensive Utilization, 2019, 37 (8): 181- 183. | 9 | PARUL , KAUR K , BADRU R , et al. Photodegradation of organic pollutants using heterojunctions: a review[J]. Journal of Environmental Chemical Engineering, 2020, 8 (2): 103666. | 10 | 余家国, 赵修建. 半导体多相光催化原理及其在环境保护中的应用[J]. 武汉工业大学学报, 2000, (4): 12- 15. | 10 | YU J G , ZHAO X J . The principle of semiconductor heterogeneous photocatalysis and its application in environmental protection[J]. Journal of Wuhan Polytechnic University, 2000, (4): 12- 15. | 11 | 莫秋燕, 曾凡菊, 张颂, 等. TiO2光催化原理及其应用综述[J]. 科学技术创新, 2018, (30): 79- 80. | 11 | MO Q Y , ZENG F J , ZHANG S , et al. Overview of the principle and application of TiO2 photocatalysis[J]. Science and Technology Innovation, 2018, (30): 79- 80. | 12 | 任成军, 李大成, 周大利, 等. 纳米TiO2的光催化原理及其应用[J]. 四川有色金属, 2004, (2): 19- 24. | 12 | REN C J , LI D C , ZHOU D L , et al. The principle and application of nano-TiO2 photocatalysis[J]. Sichuan Nonferrous Metals, 2004, (2): 19- 24. | 13 | GIOVANNETTI R , ROMMOZZ E , ZANNOTTI M , et al. Recent advances in graphene based TiO2 nanocomposites (GTiO2 Ns) for photocatalytic degradation of synthetic dyes[J]. Catalysts, 2017, 7 (10): 305. | 14 | 郑凯, 张启彦, 王路瑶, 等. 石墨烯基光催化复合材料研究进展[J]. 工业催化, 2019, 27 (8): 36- 41. | 14 | ZHENG K , ZHANG Q Y , WANG L Y , et al. Research progress of graphene-based photocatalytic composites[J]. Industrial Catalysis, 2019, 27 (8): 36- 41. | 15 | 牟铭, 顾宝珊, 王仕东, 等. 石墨烯及其复合材料在水处理中的研究进展[J]. 化工新型材料, 2019, 47 (12): 16- 21. | 15 | MOU M , GU B S , WANG S D , et al. Research progress of graphene and its composite materials in water treatment[J]. New Chemical Materials, 2019, 47 (12): 16- 21. | 16 | 孟亮, 孙阳, 公晗, 等. 石墨烯基材料应用于水污染物治理领域的研究进展[J]. 新型炭材料, 2019, 34 (3): 220- 237. | 16 | MENG L , SUN Y , GONG H , et al. Research progress of graphene-based materials in the field of water pollutant treatment[J]. New Carbon Materials, 2019, 34 (3): 220- 237. | 17 | 路福叶, 肖淑艳. 石墨烯基TiO2光催化剂的制备及其研究进展[J]. 云南化工, 2020, 47 (1): 16- 18. | 17 | LU F Y , XIAO S Y . Preparation and research progress of graphene-based TiO2 photocatalyst[J]. Yunnan Chemical Industry, 2020, 47 (1): 16- 18. | 18 | 胡忠良, 李雪锋, 席柳江, 等. 石墨烯材料在水处理方面的研究进展[J]. 功能材料, 2016, 47 (增刊1): 1- 6. | 18 | HU Z L , LI X F , XI L J , et al. Research progress of graphene materials in water treatment[J]. Functional Materials, 2016, 47 (Suppl 1): 1- 6. | 19 | PRASAD C , LIU Q , TANG H , et al. An overview of graphene oxide supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications[J]. Journal of Molecular Liquids, 2019, 297, 111826. | 20 | HENNI A , HARFOUCHE N , KARAR A , et al. Synthesis of graphene-ZnO nanocomposites by a one-step electrochemical deposition for efficient photocatalytic degradation of organic pollutant[J]. Solid State Sciences, 2019, 98, 106039. | 21 | AKHILA A K , VINITHA P S , RENUKA N K . Photocatalytic activity of graphene-titania nanocomposite[J]. Materials Today: Proceedings, 2018, 5 (8): 16085- 16093. | 22 | SHAKEEL A K , ZUNAIRA A , SAMMIA S , et al. Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin[J]. Composites Part B, 2019, 175, 107120. | 23 | RALIYA R , AVERY C , CHAKRABARTI S , et al. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation[J]. Applied Nanoence, 2017, 7 (5): 253- 259. | 24 | HUO J W , YUAN C , WANG Y , et al. Nanocomposites of three-dimensionally ordered porous TiO2 decorated with Pt and reduced graphene oxide for the visible-light photocatalytic degradation of waterborne pollutants[J]. ACS Applied Nano Materials, 2019, 2 (5): 2713- 2724. | 25 | MARJORIE L B , AMR H M , VAN Q N , et al. Eco-friendly synthesis of recyclable mesoporous zinc ferrite@reduced graphene oxide nanocomposite for efficient photocatalytic dye degradation under solar radiation[J]. Journal of Colloid and Interface Science, 2020, 561, 459- 469. | 26 | JENITA R , JOTHI R , GNANA K , et al. Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye[J]. Research on Chemical Intermediates, 2016, 43 (4): 2669- 2690. | 27 | POTLE V D , SHIRSATH S R , BHANVASE B A , et al. Sonochemical preparation of ternary rGO-ZnO-TiO2 nanocomposite photocatalyst for efficient degradation of crystal violet dye[J]. Optik-International Journal for Light and Electron Optics, 2020, 208, 164555. | 28 | HARSHA B , MEENAKETAN S , SANDHYA S , et al. Porous graphene wrapped SrTiO3 nanocomposite: Sr-C bond as an effective coadjutant for high performance photocatalytic degradation of methylene blue[J]. ACS Applied Nano Materials, 2019, 2 (10): 6629- 6636. | 29 | REDDY C , REDDY K R , HARISH V , et al. Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes[J]. International Journal of Hydrogen Energy, 2020, 45 (13): 7656- 7679. | 30 | WANG C C , YI X H , WANG P . Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance[J]. Applied Catalysis B, 2019, 247, 24- 48. | 31 | ZHU J J , LI P Z , GUO W H , et al. Titanium-based metal-organic frameworks for photocatalytic applications[J]. Coordination Chemistry Reviews, 2018, 359, 80- 101. | 32 | WANG C C , WANG X , LIU W , et al. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review[J]. Chemical Engineering Journal, 2019, 391, 123601. | 33 | WU T , LIU X J , LIU Y , et al. Application of QD-MOF composites for photocatalysis: energy production and environmental remediation[J]. Coordination Chemistry Reviews, 2020, 403, 213097. | 34 | 崔继方, 崔文权. 金属有机骨架材料在光催化领域的应用研究进展[J]. 陶瓷, 2019, (11): 65- 70. | 34 | CUI J F , CUI W Q . Research progress in the application of metal organic framework materials in the field of photocatalysis[J]. Ceramics, 2019, (11): 65- 70. | 35 | 付梦雨, 王宏莹, 陈峻峰, 等. 金属有机骨架材料制备、特性及其在环境治理方面应用的研究进展[J]. 曲阜师范大学学报(自然科学版), 2019, 45 (4): 83- 90. | 35 | FU M Y , WANG H Y , CHEN J F , et al. Research progress in the preparation, characteristics and application of metal-organic framework materials in environmental governance[J]. Journal of Qufu Normal University (Natural Science Edition), 2019, 45 (4): 83- 90. | 36 | HARIGANESH S , VADIVEL S , MARUTHAMANI D , et al. Facile large scale synthesis of CuCr2O4/CuO nanocomposite using MOF route for photocatalytic degradation of methylene blue and tetracycline under visible light[J]. Applied Organometallic Chemistry, 2019, 34 (2): 5365. | 37 | CHEN Y , ZHAI B Y , LIANG Y N , et al. Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation[J]. Journal of Solid State Chemistry, 2019, 274, 32- 39. | 38 | MIAN Z H , GOVINDER S P , ZHENG H , et al. Porous ZnO/carbon nanocomposites derived from metal organic frameworks for highly efficient photocatalytic applications: a correlational study[J]. Carbon, 2019, 146, 348- 363. | 39 | NIYAZ M M , SAMANEH K , MINA O , et al. Metal-organic framework (ZIF-8)/inorganic nanofiber (Fe2O3) nanocomposite: green synthesis and photocatalytic degradation using LED irradiation[J]. Journal of Molecular Liquids, 2019, 291, 111333. | 40 | HU C C , HU X X , LI R , et al. MOF derived ZnO/C nanocomposite with enhanced adsorption capacity and photocatalytic performance under sunlight[J]. Journal of Hazardous Materials, 2020, 385, 121599. | 41 | LIN Y F , WAN H , CHEN F S , et al. Two-dimensional porous cuprous oxide nanoplatelets derived from metal-organic frameworks (MOFs) for efficient photocatalytic dye degradation under visible light[J]. Dalton Transactions, 2018, 47 (23): 7694. | 42 | QIAN X F , XU H , ZHANG X , et al. Enhanced visible-light-driven photocatalytic activity of Ag3PO4/metal-organic framework composite[J]. Polyhedron, 2019, 163, 1- 6. | 43 | 王春来, 李钒, 杨焜, 等. 碳量子点-二氧化钛复合光催化剂的研究进展[J]. 材料导报, 2018, 32 (19): 3348- 3357. | 43 | WANG C L , LI F , YANG K , et al. Research progress of carbon quantum dot-titania composite photocatalyst[J]. Materials Reports, 2018, 32 (19): 3348- 3357. | 44 | 姜婷婷, 石勇, 柯军, 等. 基于碳量子点的TiO2改性及降解污染物性能[J]. 东北大学学报(自然科学版), 2018, 39 (1): 138- 142. | 44 | JIANG T T , SHI Y , KE J , et al. Modification of TiO2 based on carbon quantum dots and the performance of degrading pollutants[J]. Journal of Northeastern University (Natural Science Edition), 2018, 39 (1): 138- 142. | 45 | SHEETAL S , VISHAL D , PARDEEP S , et al. Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review[J]. Journal of Cleaner Production, 2019, 228, 755- 769. | 46 | CHU K , LEE S L , CHANG C J , et al. Recent progress of carbon dot precursors and photocatalysis applications[J]. Polymers, 2019, 11 (4): 689. | 47 | WANG J J , TANG L , ZENG G M , et al. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight[J]. Applied Catalysis B, 2018, 222, 115- 123. | 48 | MIAO R , LUO Z , ZHONG W , et al. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst[J]. Applied Catalysis, 2016, 189, 26- 38. | 49 | JIAO C , JUAN S , ZHANG A Q , et al. Synthesis of carbon quantum dots/TiO2 nanocomposite for photo-degradation of Rhodamine B and cefradine[J]. Diamond and Related Materials, 2016, 70, 137- 144. | 50 | XU N , HUANG H Q , WANG H G , et al. Preparation of the heterojunction catalyst N-doping carbon quantum dots/P25 and its visible light photocatalytic activity[J]. Scientific Reports, 2019, 9 (1): 1- 10. | 51 | MEHDI R , MERAAT M , MOHSEN B , et al. S, N co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst[J]. Nanotechnology, 2019, 30 (50): 505702. | 52 | GUO Y M , CAO F P , LI Y B , et al. Solid phase synthesis of nitrogen and phosphor co-doped carbon quantum dots for sensing Fe3+ and the enhanced photocatalytic degradation of dyes[J]. Sensors and Actuators B: Chemical, 2018, 255, 1105- 1111. | 53 | CHEN J B , CHE H N , HUANG K , et al. Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants[J]. Applied Catalysis B, 2016, 192, 134- 144. |
|
[1] |
Qianxin WU, Lei LIU, Jinmeng SUN, Yifan LI, Yuhang LIU, Hongfang DU, Wei AI, Zhuzhu DU, Ke WANG. Sodium ions storage performance of PSS-rGO composites[J]. Journal of Materials Engineering, 2022, 50(4): 36-43. |
|
|
|
|