|
|
Microstructure and mechanical property of short fiber reinforced C/C-SiC composites |
Congcong LIU1, Yalei WANG1,*( ), Xiang XIONG1, Zhiyong YE1, Zaidong LIU1, Yufeng LIU1,2 |
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China 2 Science and Technology of Advanced Functional Composites Laboratory, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China |
|
|
Abstract One-staged forming of porous C/C composites as well as volume fraction control of pores were realized, based on thermophysical property analysis and proportioning design of raw materials. Short fiber reinforced C/C-SiC composites with high densification and low content of residual Si were prepared by hot-pressing-infiltration two-step method at low temperature. The structural evolution of C/C-SiC composites was analyzed in detail, the mechanical properties as well as failure behaviors were also investigated. Results show that the porous C/C composites present bipolar distribution in pore size, adding aramid fibers is an effective method to improve the connectivity of network pores, exhibiting a significant regulatory effect. Both SiC network skeleton and pinning structure with strong interface between SiC matrix and carbon fiber bundle can entrust the excellent mechanical properties of C/C-SiC composites with high carbon fiber content. In addition, the fracture toughness of C/C-SiC composites can be improved significantly with the addition of aramid fibers, resulting in the increase of crack propagation path. The isotropic distribution of carbon fiber in plane and the uniform distribution of ceramic phase between layers play a positive role in improving the bearing capacity and friction stability of C/C-SiC composites.
|
Received: 11 January 2022
Published: 18 July 2022
|
|
Corresponding Authors:
Yalei WANG
E-mail: yaleipm@csu.edu.cn
|
|
|
|
|
TG-DSC curves of phenolic resin (a) and aramid fiber (b)
|
Mass fraction/% | C/C theoretical density/(g·cm-3) | C/C theoretical porosity/% | Carbon fiber | Phenolic resin | Aramid fiber | 69 | 31 | 0 | 1.38 | 22 | 69 | 26 | 5 | 1.37 | 23 |
|
Raw material ratios of carbon fiber reinforced resin composites
|
|
Preparation process of short fiber reinforced C/C-SiC composites
|
|
Microscopic morphologies of fiber reinforced resin composites (a), (b)without aramid fiber; (c), (d)with aramid fiber; EDS results of position 1(e), 2(f)
|
|
Low magnification (1) and high magnification (2) microscopic morphologies of porous C/C composites (a)CR-C/C composites; (b)CRF-C/C composites
|
|
Pore reconstruction diagrams (1) and ball-and-stick models (2) of porous C/C composites (a)CR-C/C composites; (b)CRF-C/C composites
|
Sample | Pore coordination number | Pore tortuosity | X | Y | Z | CR-C/C | 0.84 | 1.25 | 1.51 | 5.79 | CRF-C/C | 1.39 | 1.23 | 1.75 | 3.04 |
|
Pore structural parameters of porous C/C composites
|
|
Differential curves of pore size distributions for porous C/C composites
|
|
XRD patterns of short fiber reinforced C/C-SiC composites
|
|
Microscopic morphologies of short fiber reinforced C/C-SiC composites (a)CR-C/C-SiC composites; (b)CRF-C/C-SiC composites; (c), (d)SiC skeletons; (1)low magnification; (2)high magnification
|
|
Mechanical properties of short fiber reinforced C/C-SiC composites
|
|
Flexural load-displacement curves of short fiber reinforced C/C-SiC composites
|
|
Bending fracture morphologies of short fiber reinforced C/C-SiC composites (a)CR-C/C-SiC composites; (b)CRF-C/C-SiC composites; (1)low magnification; (2)high magnification
|
|
Compression fracture morphologies of short fiber reinforced C/C-SiC composites (a)CR-C/C-SiC composites; (b)CRF-C/C-SiC composites; (1)low magnification; (2)high magnification
|
1 | KRENKEL W , HEIDENREICH B , RENZ R . C/C-SiC composites for advanced friction systems[J]. Advanced Engineering Materials, 2002, 4 (7): 427- 436. | 2 | KRENKEL W. C/C-SiC composites for hot structures and advanced friction systems[C]//KRIVEN W M, LIN H T. 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: B. Westerville, USA: AMER CERAMIC SOC, 2003: 583-592. | 3 | HEIDENREICH B , BAMSEY N , SHI Y , et al. Manufacture and test of C/C-SiC sandwich structures[J]. Ceas Space Journal, 2020, 12 (1): 73- 84. | 4 | PATEL M , SAURABH K , PRASAD V V B , et al. High temperature C/C-SiC composite by liquid silicon infiltration: a literature review[J]. Bulletin of Materials Science, 2012, 35 (1): 63- 73. | 5 | LI F , XIAO P , LI Z , et al. Microstructures and properties of C/C-SiC composites derived from different gaseous carbon matrix precursors[J]. Ceramics International, 2021, 47 (21): 30777- 30789. | 6 | WANG J , PEI X , ZHI J , et al. The effects of phenolic resin-derived PyC interlayers on microstructure and mechanical properties of Cf/SiC composites[J]. Ceramics International, 2018, 44 (14): 16157- 16163. | 7 | KRNEL K , STADLER Z , KOSMAC T . Carbon/carbon-silicon-carbide dual-matrix composites for brake discs[J]. Materials and Manufacturing Processes, 2008, 23 (6): 587- 590. | 8 | KRENKEL W, LANGHOF N. Ceramic matrix composites for high performance friction applications[C]//Proceedings of the Ⅳ Advanced Ceramics and Applications Conference. Paris: Atlantis Press, 2017: 13-28. | 9 | 孙国帅, 刘荣军, 曹英斌, 等. C/C-SiC刹车材料的研究进展[J]. 材料导报, 2016, 30 (增刊1): 516- 519. | 9 | SUN G S , LIU R J , CAO Y B , et al. Research progress of C/C-SiC composite for brake[J]. Materials Review, 2016, 30 (Suppl 1): 516- 519. | 10 | XI O Y , LI Z , XIAO P , et al. Effects of the high-temperature treatment of C/C composites on their tribological properties[J]. New Carbon Materials, 2019, 34 (5): 472- 480. | 11 | JIANG G , YANG J , XU Y , et al. Effect of graphitization on microstructure and tribological properties of C/SiC composites prepared by reactive melt infiltration[J]. Composites Science and Technology, 2008, 68 (12): 2468- 2473. | 12 | 肖鹏, 李专, 熊翔. 高性能制动系统用炭纤维增强炭和SiC双基体(C/C-SiC)复合材料[J]. 材料工程, 2009, (增刊2): 263- 267. | 12 | XIAO P , LI Z , XIONG X . C/C-SiC composites for advanced friction systems[J]. Journal of Materials Engineering, 2009, (Suppl 2): 263- 267. | 13 | RENZ R , SEIFERT G , KRENKEL W . Integration of CMC brake disks in automotive brake systems[J]. International Journal of Applied Ceramic Technology, 2012, 9 (4): 712- 724. | 14 | MA X , FAN S , SUN H , et al. Investigation on braking performance and wear mechanism of full-carbon/ceramic braking pairs[J]. Tribology International, 2020, 142, 105981. | 15 | DAI J , ZHANG Z , ZU Y , et al. Role of fiber-matrix adhesion at CFRP stage on microstructure and mechanical properties of C/C-SiC composite[J]. International Journal of Applied Ceramic Technology, 2021, 19 (1): 79- 90. | 16 | XU J , GUO L , WANG H , et al. Mechanical property and toughening mechanism of 2.5D C/C-SiC composites with high textured pyrocarbon interface[J]. Ceramics International, 2021, 47 (20): 29183- 29190. | 17 | 李金伟, 肖鹏, 李专, 等. 短碳纤维含量对温压-熔渗工艺制备C/C-SiC复合材料力学性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19 (5): 825- 831. | 17 | LI J W , XIAO P , LI Z , et al. Effect of short carbon fiber content on mechanical properties of C/C-SiC composites prepared by WP-LSI[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19 (5): 825- 831. | 18 | 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43 (4): 98- 101. | 18 | MA Y , CHEN Z H . Effect of 1800℃ annealing on microstructures and properties of C/SiC composites fabricaed by precuesor infiltration and pyrolysis[J]. Journal of Materials Engineering, 2015, 43 (4): 98- 101. | 19 | 杜鹏程, 王雅雷, 熊翔, 等. 全长纤维针刺C/C-SiC复合材料的力学与热扩散性能[J]. 矿冶工程, 2021, 41 (3): 114- 119. | 19 | DU P C , WANG Y L , XIONG X , et al. Mechanical and thermal diffusion properties of C/C-SiC composites with full-length fiber needled preform[J]. Mining and Metallurgical Engineering, 2021, 41 (3): 114- 119. | 20 | 陈刘定, 童小燕, 姚磊江, 等. 开孔对平纹编织C/SiC陶瓷基复合材料力学行为的影响[J]. 材料工程, 2009, (9): 71- 74. | 20 | CHEN L D , TONG X Y , YAO L J , et al. Influence of open hole on the mechanical behavior of plain-woven C/SiC ceramic matrix composites[J]. Journal of Materials Engineering, 2009, (9): 71- 74. | 21 | 李专, 肖鹏, 岳静, 等. C/C-SiC材料不同制动速率下的湿式摩擦磨损性能[J]. 材料工程, 2013, (3): 71- 76. | 21 | LI Z , XIAO P , YUE J , et al. Wet friction and wear properties of C/C-SiC composites during different braking speeds[J]. Journal of Materials Engineering, 2013, (3): 71- 76. | 22 | HEIDENREICH B , KRAFT H , BAMSEY N , et al. Shear properties of C/C-SiC sandwich structures[J]. International Journal of Applied Ceramic Technology, 2022, 19 (1): 54- 61. | 23 | 赵彦伟, 孙文婷, 李军平, 等. C/C-SiC复合材料的反应熔渗法制备与微观组织[J]. 宇航材料工艺, 2013, 43 (2): 64- 69. | 23 | ZHAO Y W , SUN W T , LI J P , et al. Preparation and microstructure of C/C-SiC composites by reaction melt infiltration[J]. Aerospace Materials and Technology, 2013, 43 (2): 64- 69. | 24 | YANG J , AI Y , LV X , et al. Fabrication of C/C-SiC composites using high-char-yield resin[J]. International Journal of Applied Ceramic Technology, 2020, 18 (2): 449- 456. | 25 | GOO B C . Development and characterization of C/C-SiC brake disc[J]. Materials and Manufacturing Processes, 2016, 31 (8): 979- 988. | 26 | 李专. C/C-SiC摩擦材料的制备、结构和性能[D]. 长沙: 中南大学, 2010. | 26 | LI Z. Preparation, microstructure and properties of C/C-SiC braking composite[D]. Changsha: Central South University, 2010. | 27 | 张海连, 段淼, 李四中, 等. 催化炭化-原位反应/反应熔体浸渗法制备C/C-SiC复合材料[J]. 材料工程, 2021, 49 (7): 85- 91. | 27 | ZHANG H L , DUAN M , LI S Z , et al. Fabication of C/C-SiC composites via catalytic carbonization-in situ reaction and catalytic carbonization-reactive melt infiltration process[J]. Journal of Materials Engineering, 2021, 49 (7): 85- 91. | 28 | TZENG S S , CHR Y G . Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis[J]. Materials Chemistry and Physics, 2002, 73 (2/3): 162- 169. | 29 | JAIN N , KOSIN M , SHI Y , et al. Characterization and modeling of transverse micro-cracking during pyrolysis process of carbon fiber reinforced plastics[J]. International Journal of Applied Ceramic Technology, 2019, 16 (5): 1734- 1743. | 30 | 王玲玲, 马文闵, 嵇阿琳, 等. C/C多孔体对C/C-SiC复合材料制备及性能的影响[J]. 材料工程, 2014, (7): 34- 38. | 30 | WANG L L , MA W M , JI A L , et al. Effect of C/C porous perform on the preparation and properties of C/C-SiC composites[J]. Journal of Materials Engineering, 2014, (7): 34- 38. | 31 | SRIVASTAVA V K , KRENKEL W , D'SOUZA V J A , et al. Manufacturing, analysis and modelling of porous Si-SiC ceramics derived by oxidation from C/C-Si-SiC composites[J]. Journal of Ceramic Science and Technology, 2011, 2 (2): 111- 118. | 32 | ZHANG Y , XU Y , GAO L , et al. Preparation and microstructural evolution of carbon/carbon composites[J]. Materials Science and Engineering: A, 2006, 430 (1/2): 9- 14. | 33 | 王晓静, 李寅, 梁欢, 等. 基于原位红外光谱的热固性酚醛树脂固化过程研究[J]. 宇航材料工艺, 2018, 48 (6): 72- 77. | 33 | WANG X J , LI Y , LIANG H , et al. Study on curing process of thermosetting phenolic resin based on in-situ infrared spectroscopy[J]. Aerospace Materials and Technology, 2018, 48 (6): 72- 77. | 34 | 田志宏, 张秀华, 梅鸣华. 压汞法测试耐火材料孔结构的原理与方法[J]. 理化检验(物理分册), 2013, 49 (9): 615- 617. | 34 | TIAN Z H , ZHANG X H , MEI M H . Principle and method of refractory pore structure measurement by mercury intrusion method[J]. Physical Testing and Chemical Analysis (Part A), 2013, 49 (9): 615- 617. | 35 | 李滔, 李闽, 张烈辉, 等. 微多孔介质迂曲度与孔隙结构关系[J]. 天然气地球科学, 2018, 29 (8): 1181- 1189. | 35 | LI T , LI M , ZHANG L H , et al. Study on the relationship of tortuosity with por structure in micro-porous media[J]. Natural Gas Geoscience, 2018, 29 (8): 1181- 1189. | 36 | 丁星星, 湛利华, 李树健, 等. 先进树脂基复合材料高压微波固化工艺实验研究[J]. 玻璃钢/复合材料, 2018, (1): 68- 72. | 36 | DING X X , ZHAN L H , LI S J , et al. Experimental study on high pressure microwave curing process of advanced resin matrix composites[J]. Fiber Reinforced Plastics/Composites, 2018, (1): 68- 72. |
|
|
|
|