|
|
Effect of Mo on corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials |
Jie HU1,*( ), Zhong-qi DONG2, Ying-ming SHEN1, Yang WANG2, Jun-ya YANG1 |
1 School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 2 Department of Materials Engineering, Hebei College of Industry and Technology, Shijiazhuang 050091, China |
|
|
Abstract The effect of Mo on phase formation, corrosion resistance and magnetic property of LaFe11.5Si1.5 magnetic refrigeration materials were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), electrochemical workstation and vibrating sample magnetometer (VSM). The results show that the amount of α-Fe phase and La-rich phase increases with the increase of Mo content. Mo is distributed in both NaZn13-type structure phase (1:13 phase for short) and α-Fe phase, but it does not appear in the La-rich phase. The studies on the corrosion resistance show that the corrosion potential increases and corrosion current density decreases with the increase of Mo content from x=0 to x=0.2, which indicate that the thermodynamic stability and corrosion resistance are improved. However, the corrosion resistance decreases while x increases to 0.3. The maximum magnetic entropy changes of LaFe11.5-xMoxSi1.5 under a magnetic field change of 0-3 T are about 18.51 J/(kg·K)(x=0), 16.24 J/(kg·K)(x=0.1) and 5.68 J/(kg·K)(x=0.2), respectively.
|
Received: 27 April 2019
Published: 15 August 2020
|
|
Corresponding Authors:
Jie HU
E-mail: hujiecactus@163.com
|
|
|
|
|
XRD patterns of LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2, 0.3)alloys
|
|
SEM micrographs of LaFe11.5-xMoxSi1.5 alloys (a)x=0;(b)x=0.1;(c)x=0.2;(d)x=0.3
|
|
Mo content in 1:13 phase and α-Fe phase as function of the Mo concentration
|
|
Potentiodynamic polarization curves(a) and corrosion rate(b) of LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2, 0.3)alloys after immersed in deionized water
|
Sample | Icorr/(A·cm-2) | Ecorr/V | x=0 | 4.713×10-6 | -0.766 | x=0.1 | 3.556×10-6 | -0.737 | x=0.2 | 3.412×10-6 | -0.733 | x=0.3 | 4.742×10-6 | -0.782 |
|
Corrosion current density and corrosion potential of LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2, 0.3) alloys in deionized water
|
|
Thermomagnetization curves of LaFe11.5-xMoxSi1.5(x=0, 0.1, 0.2) alloys
|
|
Isothermal magnetization curves of LaFe11.5-xMoxSi1.5 alloys (a)x=0;(b)x=0.1;(c)x=0.2
|
|
Temperature dependence of magnetic entropy changes of LaFe11.5-xMoxSi1.5 alloys (a)x=0;(b)x=0.1;(c)x=0.2
|
1 | HU F X , SHEN B G , SUN J R , et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6[J]. Applied Physics Letters, 2001, 78 (23): 3675- 3677. | 2 | FUJITA A , FUKAMICHI K . Large magnetocaloric effects and Landau coefficients of itinerant electron metamagnetic La(FexSi1-x)13 compounds[J]. IEEE Transactions on Magnetics, 2005, 41 (10): 3490- 3492. | 3 | YANG N N , YOU C Y , TIAN N , et al. Simultaneous plate forming and hydriding of La(Fe, Si)13magnetocaloric powders[J]. Journal of Magnetism and Magnetic Materials, 2018, 451, 47- 50. | 4 | FUJIEDA S , FUKAMICHI K , SUZUKI S . Microstructure and isothermal magnetic entropy change of La(Fe0.89Si0.11)13 in a single-phase formation process by annealing[J]. Journal of Alloys and Compounds, 2013, 566, 196- 200. | 5 | ZHANG H , SHEN B G , XU Z Y , et al. Reduction of hysteresis loss and large magnetocaloric effect in the C-and H-doped La(Fe, Si)13 compounds around room temperature[J]. Journal of Applied Physics, 2012, 111 (7): 07A909. | 6 | JIA L , SUN J R , SHEN J , et al. Magnetocaloric effects in the La(Fe, Si)13 intermetallics doped by different elements[J]. Journal of Applied Physics, 2009, 105 (7): 07A924. | 7 | LIU J , MOORE J D , SKOKOV K P , et al. Exploring La(Fe, Si)13-based magnetic refrigerants towards application[J]. Scripta Materialia, 2012, 67 (6): 584- 589. | 8 | ZHANG M , LONG Y , YE R C , et al. Corrosion behavior of magnetic refrigeration material La-Fe-Co-Si in distilled water[J]. Journal of Alloys and Compounds, 2011, 509, 3627- 3631. | 9 | FUJIEDA S , FUKAMICHI K , SUZUKI S . Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration[J]. Journal of Alloys and Compounds, 2014, 600, 67- 70. | 10 | 曹楚南. 腐蚀电化学原理[M]. 北京: 化学工业出版社, 2008: 258- 267. | 10 | CAO C N . Principles of electrochemistry of corrosion[M]. Beijing: Chemical Industry Press, 2008: 258- 267. | 11 | CHEN X , CHEN Y G , TANG Y B , et al. Effects of the excess iron on phase and magnetocaloric property of LaFe11.6*xSi1.4 alloys[J]. Journal of Rare Earths, 2015, 33 (12): 1293- 1297. | 12 | ZHANG E Y , CHEN Y G , TANG Y B . Investigation on corrosion and galvanic corrosion in LaFe11.6Si1.4 alloy[J]. Materials Chemistry and Physics, 2011, 127 (1/2): 1- 6. | 13 | XUE J N , LONG Y , WANG Y X , et al. Corrosion behavior and phase formation of LaFe13-xSixBy alloys[J]. Materials & Design, 2017, 129, 1- 8. | 14 | ZHANG M , SUN W , LONG Y , et al. Effect of chromium on magnetic properties and corrosion resistance of LaFe11.5Si1.5 compound[J]. Journal of Rare Earths, 2013, 31 (1): 69- 72. | 15 | HU J , GUAN L , FU S , et al. Corrosion and latent heat in thermal cycles for La(Fe, Mn, Si)13magnetocaloric compounds[J]. Journal of Magnetism and Magnetic Materials, 2014, 354, 336- 339. | 16 | HU J , ZHANG M , LONG Y , et al. Corrosion behavior and ΔS-Tc relation of LaFe13-x-yCoxSiyCz compounds near room temperature[J]. Journal of Magnetism and Magnetic Materials, 2015, 377, 368- 372. | 17 | TIAN N , YOU C Y , GAO B , et al. Magnetic hysteresis loss and corrosion behavior of LaFe11.5Si1.5 particles coated with Cu[J]. Journal of Applied Physics, 2013, 113 (10): 103909. | 18 | LYUBINA J , HANNEMANN U , COHEN L F , et al. Novel La(Fe, Si)13/Cu composites for magnetic cooling[J]. Advanced Energy Materials, 2012, 2 (11): 1323- 1327. | 19 | ZHANG E , CHEN Y G , TANG Y B . Effect of copper ion implantation on corrosion morphology and corrosion behavior of LaFe11.6Si1.4 alloy[J]. Journal of Rare Earths, 2012, 30 (3): 269- 273. | 20 | YOU C Y , WANG S P , ZHANG J , et al. Improvement of magnetic hysteresis loss, corrosion resistance and compressive strength through spark plasma sintering magnetocaloric LaFe11.65Si1.35/Cu core-shell powders[J]. AIP Advances, 2016, 6 (5): 055321. | 21 | 敬和民, 吴欣强, 郑玉贵, 等. Mo含量对不锈钢在环烷酸介质中腐蚀与冲蚀的影响[J]. 金属学报, 2002, 38 (10): 1067- 1073. | 21 | JING H M , WU X Q , ZHENG Y G , et al. Effect of Mo content on the corrosion and erosion-corrosion of stainless steel in oil containing naphthenic acid[J]. Acta Metallurgica Sinica, 2002, 38 (10): 1067- 1073. | 22 | 张通和, 王晓妍, 邓志威, 等. Mo注入H13钢抗腐蚀结构的分析[J]. 北京师范大学学报(自然科学版), 1996, 32 (3): 330- 333. | 22 | ZHANG T H , WANG X Y , DENG Z W , et al. Analysis of corrosion resistance structure for Mo implanted H13 steel[J]. Journal of Beijing Normal University(Natural Science), 1996, 32 (3): 330- 333. | 23 | 陆春洁, 曲锦波, 杨汉, 等. Mo元素对货油舱下底板用船板钢耐腐蚀性能的影响[J]. 腐蚀与防护, 2017, 38 (4): 273- 277. | 23 | LU C J , QU J B , YANG H , et al. Effect of element Mo on the corrosion resistance of shipbuilding steel for inner bottom plate of cargo oil tanks[J]. Corrosion & Protection, 2017, 38 (4): 273- 277. |
|
|
|
|