Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (2): 85-90    DOI: 10.11868/j.issn.1001-4381.2015.02.014
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
交流电对X80钢在酸性土壤环境中腐蚀行为的影响
朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶
北京科技大学 材料科学与工程学院, 北京 100083
Effects of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Acid Soil Environment
ZHU Min, LIU Zhi-yong, DU Cui-wei, LI Xiao-gang, WANG Li-ye
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(5253 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过电化学测试、浸泡实验和表面分析技术研究了交流电流密度(0~1000A/m2)对X80钢在鹰潭酸性土壤模拟溶液中腐蚀行为的影响.结果表明:随交流电流密度的增加,X80钢的腐蚀速率逐渐增加.当交流电流密度小于100A/m-2时,其腐蚀速率缓慢增大,X80钢腐蚀电位随交流电流密度增加而快速负移;当交流电流密度大于100A/m2时,其腐蚀速率快速增加,其腐蚀电位接近.随交流电流密度的增大,X80钢的腐蚀形态由均匀腐蚀演变为点蚀,阴极极化曲线上的电流波动愈明显,阳极电流密度增大.交流电作用下X80钢生成的腐蚀产物疏松,裂纹多,对基体的保护性很差.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱敏
刘智勇
杜翠薇
李晓刚
王丽叶
关键词 X80钢交流电流密度腐蚀行为酸性土壤    
Abstract:The effects of alternating current(AC) current density(0-1000A/m2) on the corrosion behavior of X80 steel in Yingtan acid soil simulated solution was studied by electrochemical test, immersion test and surface characterization technique. The results show that with the increase of AC current density, the corrosion rates of X80 steel increase. The corrosion rates increase slightly and the corrosion potentials of X80 steel rapidly shift negatively, with an increasing AC current density less than 100A/m2. When the AC current density is greater than 100A/m2, the corrosion rates increase rapidly and the corrosion potentials of X80 steel are roughly equal. With the increase in AC current density, the corrosion forms evolve from uniform corrosion to pitting corrosion. Moreover, the current fluctuation on the cathodic polarization curves becomes more obvious and the anode current densities increase. The corrosion product of X80 steel under AC application can not protect the substrate, because of its loose and multi-cracked characteristics.
Key wordsX80 steel    AC current density    corrosion behavior    acid soil
收稿日期: 2014-01-24     
1:  TG171  
基金资助:国家自然科学基金(51371036); 国家高技术研究发展计划项目(2012AA040105)
通讯作者: 刘智勇(1978-),男,副教授,主要从事材料的腐蚀与防护,联系地址:北京市海淀区学院路30号北京科技大学材料科学与工程学院(100083), E-mail: liuzhiyong7804@126.com     E-mail: liuzhiyong7804@126.com
引用本文:   
朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响[J]. 材料工程, 2015, 43(2): 85-90.
ZHU Min, LIU Zhi-yong, DU Cui-wei, LI Xiao-gang, WANG Li-ye. Effects of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Acid Soil Environment. Journal of Materials Engineering, 2015, 43(2): 85-90.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.02.014      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I2/85
[1] WAKELIN R G, SHELDON C. Investigation and mitigation of AC corrosion on a 300 mm diameter natural gas pipeline[A]. Corrosion/2004[C]. Houston: NACE, 2004.
[2] ROGER F. Testing and mitigation of AC corrosion on 8 line: a field study[A]. Corrosion/2004[C].Houston: NACE,2004.
[3] 李自力,杨燕. 金属材料交流腐蚀机理、影响因素及风险评价[J].化工学报, 2011,62(7):1790-1799.LI Zi-li, YANG Yan. Mechanism, influence factors and risk evaluation of metal alternating current corrosion[J]. CIESC J,2011,62(7):1790-1799.
[4] 李自力, 杨燕. 金属管道交流腐蚀研究新进展[J]. 石油学报,2012,33(1):164-171.LI Zi-li, YANG Yan. New progress in studying alternating current corrosion on metal pipelines[J]. Acta Petrol Sin,2012,33(1):164-171.
[5] 杜晨阳, 曹备, 吴荫顺. 交流电干扰下-850mV(CSE)阴极保护电位准则的适用性研究[J].腐蚀与防护, 2009,30(9):655-659.DU Chen-yang, CAO Bei, WU Yin-shun. Applicability of-850 mV (CSE) cathodic protection potential criterion under AC interference condition [J].Corros Prot,2009,30(9):655-659.
[6] FUNK D, PRINZ W, SCHONEICH H G. Investigations of AC corrosion in cathodically protected pipes [J]. 3R International, 1992, 31(6): 336-341.
[7] CHIN D T, FU T W. Corrosion by alternating current: a study of the anodic polarization of mild steel in Na2SO4 solution[J]. Corrosion, 1979,35(11): 514-523.
[8] CHIN D T, SACHDEY P. Corrosion by alternating current: polarization of mild steel in neutral electrolytes [J]. J Electrochem Soc, 1983, 130(8): 1714-1718.
[9] FU A Q, CHENG Y F. Effects of alternating current on corrosion of a coated pipeline steel in a chloride-containing carbonate/bicarbonate solution [J].Corros Sci, 2010, 52(2): 612-619.
[10] GOIDANICH S,LAZZARI L,ORMELLESE M. AC Corrosion-Part 2:parameters influencing corrosion rate[J]. Corros Sci,2010, 52(3): 916-922.
[11] 翁永基,王宁.碳钢交流电腐蚀机理的探讨[J].中国腐蚀与防护学报,2011, 31(4):270-274. WENG Yong-ji, WANG Ning. Carbon steel corrosion induced by alternating current[J].J Chin Soc Corros Prot, 2011,31(4):270-274.
[12] 姜子涛,杜艳霞,董亮,等. 交流电对Q235钢腐蚀电位的影响规律研究[J]. 金属学报, 2011,47(8):997-1002. JIANG Zi-tao, DU Yan-xia, DONG Liang, et al.Effect of AC current on corrosion potential of Q235 steel[J]. Acta Metall Sin,2011,47(8):997-1002.
[13] XU L Y, SU X, YIN Z X, et al. Development of a real-time AC/DC data acquisition technique for studies of AC corrosion of pipelines[J]. Corros Sci, 2012,61:215-223.
[14] 杨燕,李自力,文闯. 交流电对X70钢表面形态及电化学行为的影响[J]. 金属学报, 2013,49(1):43-50. YANG Yan, LI Zi-li, WEN Chuang. Effects of alternating current on X70 steel morphology and electrochemical behavior [J].Acta Metall Sin, 2013,49(1):43-50.
[15] KULMAN F E. Effects of alternating currents in causing corrosion [J]. Corrosion, 1961, 17(3): 34-35.
[16] GOIDANICH S, LAZZARI L,ORMELLESE M, et al. Influence of AC on corrosion kinetics for carbon steel, zinc and copper. Corrosion/2005. Houston: NACE, 2005.
[17] JONES D A. Effect of alternating current on corrosion of low alloy and carbon steels [J]. Corrosion, 1978, 34(12): 428-433.
[18] NIELSEN L V,GALSGAARD F. Sensor technology for on-line monitoring of AC-induced corrosion along pipelines. Corrosion/2005. Houston: NACE, 2005.
[19] 聂向晖,李云龙,李记科,等. Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析[J].材料工程, 2010, (8): 24-33. NIE Xiang-hui, LI Yun-long, LI Ji-ke, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil [J]. Journal of Materials Engineering, 2010, (8): 24-33.
[1] 胥聪敏, 杨东平, 张灵芝, 史立强, 李辉辉. SRB对X100钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料工程, 2015, 43(6): 71-78.
[2] 程远, 俞宏英, 王莹, 孙冬柏. 外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J]. 材料工程, 2014, 0(8): 55-60.
[3] 胡侨, 张敏, 李海飞, 尹恩怀, 逄淑杰, 张涛. Ti-Zr-Cu-Co-Sn-Si块体非晶合金的形成及生物腐蚀行为和力学性能[J]. 材料工程, 2014, 0(6): 18-21.
[4] 朱敏, 杜翠薇, 李晓刚, 刘智勇, 赵天亮, 李建宽, 胡杰珍. 交流电频率对X65钢在CO32-/HCO3-溶液中腐蚀行为的影响[J]. 材料工程, 2014, 0(11): 85-89.
[5] 刘栓, 孙虎元, 孙立娟, 范汇吉, 刘增文. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60-64.
[6] 王庆娟, 张平平, 罗雷, 杜忠泽. ECAP制备超细晶铜在0.5mol/L NaCl溶液中的腐蚀行为[J]. 材料工程, 2013, 0(5): 33-37,43.
[7] 王莹, 俞宏英, 程远, 单海涛, 孙冬柏. X80钢在不同土壤模拟溶液中的腐蚀行为[J]. 材料工程, 2012, 0(1): 25-28.
[8] 胥聪敏. X80钢在霍尔果斯水饱和土壤中的短期腐蚀行为研究[J]. 材料工程, 2011, 0(3): 78-81,86.
[9] 于萍, 张金岭, 许红, 张长桥. 表面不均匀性黑斑的钢芯铝绞线模拟海洋环境5年腐蚀行为的研究[J]. 材料工程, 2010, 0(3): 46-50,55.
[10] 胥聪敏. X80管线钢在模拟盐碱土壤介质中的电化学腐蚀行为研究[J]. 材料工程, 2009, 0(9): 66-70.
[11] 宋晓岚, 张晓伟, 徐大余, 喻振兴, 邱冠周. P型单晶硅片在KOH溶液中腐蚀行为的电化学研究[J]. 材料工程, 2008, 0(10): 126-131.
[12] 姚颖悟, 姚素薇, 宋振兴. 电沉积Ni-W合金在NaCl溶液中的腐蚀行为[J]. 材料工程, 2006, 0(9): 42-44,56.
[13] 陆峰, 张晓云, 汤智慧, 钟群鹏, 曹春晓. 炭纤维环氧复合材料腐蚀行为的研究[J]. 材料工程, 2004, 0(4): 16-19.
[14] 秦紫瑞, 余建宏, 李隆盛, 于勇, 邵有全, 项礼. 含钼高硅铸铁的组织及腐蚀行为研究[J]. 材料工程, 1998, 0(6): 29-31,49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn