Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (3): 28-34    DOI: 10.11868/j.issn.1001-4381.2015.03.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为
郝文魁1, 刘智勇1, 马岩2, 杜翠薇1, 李晓刚1, 胡山山1
1. 北京科技大学 腐蚀与防护中心, 北京 100083;
2. 吉林油田公司, 吉林 松原 138000
Stress Corrosion Cracking Behavior of 16Mn Steel and Heat-affected Zone in Alkaline Sulfide with Different pH Value
HAO Wen-kui1, LIU Zhi-yong1, MA Yan2, DU Cui-wei1, LI Xiao-gang1, HU Shan-shan1
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China;
2. Jilin Oil Field Company, Songyuan 138000, Jilin, China
全文: PDF(4040 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用电化学技术和U形弯试样浸泡实验研究了16Mn钢及其模拟热影响区(HAZ)在不同pH的碱性硫化物和Cl-介质中的应力腐蚀开裂(SCC) 行为与机理。结果表明:16Mn钢原始组织、粗晶组织(空冷组织)和硬化组织(淬火组织)在pH为11.8的碱性硫化物环境中均近似呈钝化状态,维钝电流密度依次降低;随着pH的降低,原始组织和粗晶组织的阳极过程逐渐由钝化态转变为活化态;HAZ中硬化组织、粗晶组织和原始组织在碱性硫化物环境下的SCC敏感性依次降低,其中硬化组织具有明显的SCC特征;随着pH的降低,SCC裂纹有从沿晶裂纹转变为穿晶和沿晶混合裂纹的趋势,并且裂纹的宽度增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝文魁
刘智勇
马岩
杜翠薇
李晓刚
胡山山
关键词 16Mn钢应力腐蚀开裂碱性硫化物pH值    
Abstract:The behavior and mechanism of stress corrosion cracking (SCC) of 16Mn steel and its heat-affected zone (HAZ) in alkaline sulfide and Cl- solution medium with different pH value was investigated by U-bent specimen immersing test and electrochemical technology. Results show that the original microstructure, the coarse grain structure (air cooling structure) and the hardening microstructure (quenching structure) exhibit a similar passivation state in alkaline sulfide solution with pH=11.8, passive current density gradually decreases; As pH value decreases, anodic process of original structure and coarse grain structure gradually change from the passivation state to the activation state. The SCC susceptibility of the hardening structure, coarse grain structure and original structure of heat-affected zone(HAZ) in alkaline sulfide environment gradually decreases, the hardening structure exhibits obvious SCC feature. With the decrease of pH, SCC cracks tend to change from intergranular cracks to transgranular and intergranular combined cracks and the width of the cracks increases.
Key words16Mn steel    stress corrosion cracking    alkaline    sulfide    pH value
收稿日期: 2013-06-25     
1:  TG172.8  
基金资助:国家科技支撑计划项目(2011BAK06B01-01)
通讯作者: 刘智勇(1978-),男,副教授,研究方向:材料腐蚀与防护,联系地址:北京市海淀区学院路30号北京科技大学腐蚀与防护中心502(100083),liuzhiyong7804@126.com     E-mail: liuzhiyong7804@126.com
引用本文:   
郝文魁, 刘智勇, 马岩, 杜翠薇, 李晓刚, 胡山山. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28-34.
HAO Wen-kui, LIU Zhi-yong, MA Yan, DU Cui-wei, LI Xiao-gang, HU Shan-shan. Stress Corrosion Cracking Behavior of 16Mn Steel and Heat-affected Zone in Alkaline Sulfide with Different pH Value. Journal of Materials Engineering, 2015, 43(3): 28-34.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.03.006      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I3/28
[1] TUMBULL A, NIMMO B.Stress corrosion testing of welded supermartensitic stainless steels for oil and gas pipelines[J].Corr Eng Sci Tech, 2005, 40(2):103-110.
[2] 刘晓春, 刘锋, 李荣强.常减压蒸馏装置腐蚀分析及防腐措施[J].化学工程与装备, 2010, (10):44-46.LIU Xiao-chun, LIU Feng, LI Rong-qiang.Corrosion analysis and control techniques of atmospheric-vacuum distillation units[J].Chemical Engineering & Equipment, 2010, (10):44-46.
[3] YIN Z F, ZHAO W Z, BAI Z Q.Corrosion behavior of SM80SS tube steel in stimulant solution containing H2S and CO2[J].Electrochimica Acta, 2004, 53(10):3690-3700.
[4] MA H Y, CHENG X L, LI G Q.The influence of hydrogen sulfide on corrosion of iron under different conditions[J].Corros Sci, 2000, 42(10):1669-1683.
[5] SHOESMITH D W, BAILEY M G, IKEDA B.Electrochemical formation of mackinawite in alkaline sulphide solutions[J].Electrochim Acta, 1978, 23:1329-1339.
[6] VELOZ M A, GONZALEZ I.Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S[J].Electrochimica Acta, 2002, 48:135-143.
[7] 杨怀玉, 陈家坚, 曹楚南, 等.H2S水溶液中的腐蚀与缓蚀作用机理的研究[J].中国腐蚀与防护学报, 2000, 20(1):8-14.YANG Huai-yu, CHEN Jia-jian, CAO Chu-nan, et al.Study on corrosion and inhibition mechanism in H2S aqueous solutions[J].Chin Soc Corros Prot, 2000, 20(1):8-14.
[8] GUPTA D V S.Corrosion behavior of 1040 carbon steel[J].Corrosion, 1981, 37:611-621.
[9] BOUET J.Corrosion products of mild steel in H2S environments[J].Compts Rendus, 1963, 256:1972-1973.
[10] SALVAREZZA R C, VIDELAH A, ARVIA A J.The electrodissolution and passivation of mild steel in alkaline sulphide solutions[J].Corros Sci, 1982, 22:815-829.
[11] VERA J, KAPUSTA S, HACKERMAN N J.Localized corrosion of iron in alkaline sulfide solutions[J].Electrochem Soc, 1986, 133(3):461-473.
[12] 刘烈炜, 胡倩, 郭沨.硫化氢对不锈钢表面钝化膜破坏的研究[J].中国腐蚀与防护学报, 2002, 22(11):22-26. LIU Lie-wei, HU Qian, GUO Feng. Study on destroy process of 1Cr18Ni9Ti stainless steel surface passive film by hydrogen sulfide[J].Chin Soc Corros Prot, 2002, 22(11):22-26.
[13] 马琦, 张玮, 叶童虓, 等.Q345R钢焊接热影响区在碳酸钠和硫化氢混合介质中的应力腐蚀行为[J].材料保护, 2012, 35(3):27-29. MA Qi, ZHANG Wei, YE Tong-xiao, et al.Stress corrosion behavior of heat affected zone of Q345R steel in mixed corrosive medium containing sodium carbonate and hydrogen sulfide[J].Materials Protection, 2012, 35(3):27-29.
[14] SMANIO V, KITTEL J, FREGONESE M, et al.Acoustic emission monitoring of wet H2S cracking of line pipe steels: application to hydrogen-induced cracking and stress-oriented hydrogen-induced cracking[J].Corros Sci, 2011, 67:1-12.
[15] PANOSSIAN Z, ALMEIDA N L, RAQUEL M F.Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: a review [J].Corros Sci, 2012, 58:1-11.
[16] DOMIZZI G, ANTERI G, OVEJIERO G J.In fluence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels[J].Corros Sci, 2001, 9:326-339.
[17] HUANG H H, TSAI W T, LEE J T.Electrochemical behavior of the simulated heat-affected zone of A516 carbon steel in H2S solution[J].Electrochim Acta, 1996, 41:1191-1199.
[18] HUANG H H, LEE J T, TSAI W T.Effect of H2S on the electrochemical behavior of steel weld in acidic chloride solutions[J].Mater Chem Phys, 1999, 58:177-181.
[19] VEDAGE H, RAMANARAYANAN T A, MUMFOED J D, et al.Electrochemical growth of iron sulfide films in H2S-saturated chloride media[J].Corrosion, 1993, 49:114-121.
[20] NICHOLAS M M, SEEFELDT R.Additive-effects during plating in acid tin methane sulfonate electrolytes[J].Electrochimica Acta, 2004, 49(25):4303-4311.
[21] SUH M S, PARK C J, KWON H S.Effects of plating parameters on alloy composition and microstructure of Sn-Bi electrodeposits from methane sulphonate bath[J].Surface and Coatings Technology, 2006, 200(1):3527-3532.
[22] LIU Z Y, LI X G, DU C W, et al.Stress corrosion cracking behavior of X70 pipe steel in an acidic soil environment[J].Corros Sci, 2008, 50:2251-2257.
[23] TORRES I A, GONZALEZ R J G, URUCHURRTU J, et al.Stress corrosion cracking study of microalloyed pipeline steels in dilute NaHCO3 solutions[J].Corros Sci, 2008, 50:2831-2839.
[24] TORRES I A, SALINAS B V M, ALBARRANC J L, et al.Effect of hydrogen on the mechanical properties of X-70 pipeline steel in diluted NaHCO3 solutions at different heat treatments[J].Hydrogen Energy, 2005, 30:1317-1322.
[25] 熊建平, 陈文静, 屈金山, 等.16Mn钢MAG焊接头热影响区尺寸与性能分析[J].西华大学学报:自然科学版, 2011, 30(2):85-101. XIONG Jian-ping, CHEN Wen-jing, QU Jin-shan, et al.Analysis of heat-affected zone width and property of steel 16Mn joint prepared by metal active gas arc welding process[J].Journal of Xihua University: Natural Science, 2011, 30(2):85-101.
[26] SRINIVASAN P B, SHARKAWU S W.Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments[J].Mater Sci Eng A, 2004, 385:6-14.
[27] CHEN Y Y, LIOU Y M, SHIH H C.Stress corrosion cracking of type 321 stainless steels in simulated petrochemical process environments containing hydrogen sulfide and chloride[J].Mater Sci Eng A, 2005, 407:114-126.
[28] 李明, 李晓刚, 刘智勇.16Mn(HIC)钢硫化物应力腐蚀开裂实验研究[J].北京科技大学学报, 2007, 29(3):282-287. LI Ming, LI Xiao-gang, LIU Zhi-yong.Experimental investigation on sulfide stress corrosion cracking of 16Mn hydrogen induced cracking resistance steel[J].Journal of University Science and Technology Beijing, 2007, 29(3):282-287.
[29] 赵明纯, 单以银, 李玉梅, 等.显微组织对管线钢硫化物应力腐蚀开裂的影响[J].金属学报, 2001, 37(10):1087-1092. ZHAO Ming-chun, SHAN Yi-yin, LI Yu-mei, et al.Effect of microstructure on sulfide stress corrosion cracking of pipeline steels[J].Acta Metall Sin, 2001, 37(10):1087-1092.
[1] 周峰, 吴开明. 超快冷工艺对高铌X80管线钢抗腐蚀性能的影响[J]. 材料工程, 2015, 43(2): 67-72.
[2] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[3] 刘瑛, 张品芳, 陈兰君, 张合, 张新明, 耿占吉. 预析出对2519A铝合金局部腐蚀性能的影响[J]. 材料工程, 2014, 0(6): 11-17.
[4] 姚小飞, 谢发勤, 王毅飞. pH值对超级13Cr钢在NaCl溶液中腐蚀行为与腐蚀膜特性的影响[J]. 材料工程, 2014, 0(3): 83-89.
[5] 刘亚虎, 蔡雪原, 朱延超, 张琳娇, 杨建红. 纳米碳化硅颗粒的团聚及分散的研究进展[J]. 材料工程, 2013, 0(9): 84-90.
[6] 张晓云, 梅克力, 熊文华, 郭孟秋, 高健. 7A52铝合金焊接件应力腐蚀性能评价[J]. 材料工程, 2013, 0(10): 86-92,97.
[7] 刘亚娟, 吕祥鸿, 赵国仙, 陈长风, 薛艳. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究[J]. 材料工程, 2012, 0(10): 17-21,47.
[8] 伍尚改, 朱燕娟, 张仲举, 周焯均, 叶贤聪, 郑汉忠, 林晓然, 包杰. 超声波功率和pH值对Y掺杂纳米Ni(OH)2结构与性能的影响[J]. 材料工程, 2011, 0(6): 27-31.
[9] 刘建华, 郝雪龙, 李松梅, 于美. 基于灰色理论的高强铝合金应力腐蚀开裂预测模型的建立与应用[J]. 材料工程, 2011, 0(3): 60-64.
[10] 吕祥鸿, 赵国仙, 王宇, 张建兵, 谢凯意. 超级13Cr马氏体不锈钢抗SSC性能研究[J]. 材料工程, 2011, 0(2): 17-21,25.
[11] 刘远勇, 张晓云, 裴和中, 陆峰, 高健. 7B04铝合金应力腐蚀敏感性研究[J]. 材料工程, 2010, 0(2): 33-36,41.
[12] 王金锋, 高雅春, 谢志鹏, 孙加林. 注凝成型超细二氧化锆悬浮体的制备[J]. 材料工程, 2008, 0(3): 18-21,27.
[13] 邓琼, 曾庆轩, 冯长根. 聚乙烯醇基强碱性阴离子交换纤维制备和性能[J]. 材料工程, 2006, 0(11): 22-26.
[14] 唐忠锋, 刘平桂, 赫丽华, 梁兴泉, 林宝凤. 端硅氧烷基低聚物/环氧树脂复合体系的耐酸碱性能研究[J]. 材料工程, 2005, 0(7): 47-50,58.
[15] 周琦, 季根顺, 张建斌, 王继红, 王建刚. 管线钢中的硫化夹杂物与氢致开裂[J]. 材料工程, 2002, 0(9): 37-39,46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn