Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (2): 112-118    DOI: 10.11868/j.issn.1001-4381.2015.000700
  综述 本期目录 | 过刊浏览 | 高级检索 |
太阳能级硅中轻质元素(C,N,O)研究进展
谭毅1,2, 秦世强1,2, 石爽1,2, 姜大川1,2, 李鹏廷1,2, 李佳艳1,2
1 大连理工大学 材料科学与工程学院, 辽宁 大连 116024;
2 大连理工大学 辽宁省太阳能光伏系统重点实验室, 辽宁 大连 116024
Research Progress on Light Elements (C, N, O) in Solar-grade Silicon
TAN Yi1,2, QIN Shi-qiang1,2, SHI Shuang1,2, JIANG Da-chuan1,2, LI Peng-ting1,2, LI Jia-yan1,2
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
2 Key Laboratory for Solar Energy Photovoltaic System of Liaoning Province, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(799 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 C,N,O等轻质元素的存在对太阳能级晶体硅材料的性能有着广泛影响,而硅材料作为太阳能电池的主要原材料,其纯度对电池的电学性能有着决定性作用。本文总结了晶体硅中C,N,O元素的存在形态、分布规律、形成机制及工艺控制等的研究进展,并对未来硅中轻质元素的研究进行了展望,使用各种提纯工艺的优势交叉互补来控制及去除硅中的杂质值得研究及关注,对硅中C,N,O元素的交互作用的深入研究也将会对硅材料质量的提高有着积极作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭毅
秦世强
石爽
姜大川
李鹏廷
李佳艳
关键词 轻质元素太阳能级硅杂质    
Abstract:The presence of light elements like C, N, O has wide influence on the properties of solar-grade silicon. Since silicon is the dominating raw material of solar cells, the purity of crystalline silicon has significant influence on electrical properties of solar cells. In this paper, the research progress on carbon, nitrogen and oxygen on the presence, distribution, formation mechanism and process control was summarized. An outlook for light elements research in silicon was also proposed, the combination of different purification methods to control and eliminate impurities in silicon is worth paying attention to investigate, and the further research on the behavior of C, N, O in silicon can also improve silicon quality.
Key wordslight element    solar-grade silicon    impurity
收稿日期: 2015-06-02      出版日期: 2017-02-23
中图分类号:  TF131  
通讯作者: 谭毅(1961-),男,教授,博士,主要从事冶金法提纯多晶硅及多晶硅制造设备的研究,联系地址:大连理工大学新三束实验室207(116024),tanyi@dlut.edu.cn     E-mail: tanyi@dlut.edu.cn
引用本文:   
谭毅, 秦世强, 石爽, 姜大川, 李鹏廷, 李佳艳. 太阳能级硅中轻质元素(C,N,O)研究进展[J]. 材料工程, 2017, 45(2): 112-118.
TAN Yi, QIN Shi-qiang, SHI Shuang, JIANG Da-chuan, LI Peng-ting, LI Jia-yan. Research Progress on Light Elements (C, N, O) in Solar-grade Silicon. Journal of Materials Engineering, 2017, 45(2): 112-118.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000700      或      http://jme.biam.ac.cn/CN/Y2017/V45/I2/112
[1] LOTNYK A, BAUER J, BREITENSTEIN O, et al. A TEM study of SiC particles and filaments precipitated in multicrystalline Si for solar cells[J]. Solar Energy Materials & Solar Cells, 2008, 92:1236-1240.
[2] BAUER J,BREITENSTEIN O, RAKOTONIAINA J P. Electronic activity of SiC precipitates in multicrystalline solar silicon[J]. Physica Status Solidi (A), 2007, 204(7):2190-2195.
[3] 杨德仁. 太阳电池材料[M]. 北京:化学工业出版社, 2009.105-174. YANG D R. Solar Cell Materials[M]. Beijing:Chemical Industry Press, 2009.105-174.
[4] 申少华,胡波,秦先志.直拉硅单晶炉热系统的改造对氧、碳含量的影响[J].湖南科技大学学报(自然科学版), 2009, 24(3):103-107. SHEN S H, HU B, QIN X Z. Influence on carbon and oxygen contents in CZ Si single crystals by improvement of thermal system of furnace[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2009, 24(3):103-107.
[5] 万群,李玉珍,徐宝琨,等. 多晶硅中碳化物及其来源的研究[J].半导体学报, 1984, 5(4):360-366. WAN Q, LI Y Z, XU B K, et al. A study of the carbide and its origin in polycrystalline silicon[J]. Chinese Journal of Semiconductors, 1984, 5(4):360-366.
[6] GAO B, NAKANO S, KAKIMOTO K. Global simulation of coupled carbon and oxygen transport in a unidirectional solidification furnace for solar cells[J]. Journal of the Electrochemical Society, 2010, 157:H153.
[7] WEIMER A W, NILSEN K J, COCHRAN G A,et al. Kinetics of carbothermal reduction synthesis of beta silicon carbide[J]. AIChE Journal, 1993, 39:493.
[8] GAO B, CHEN X J, NAKANO S,et al. Crystal growth of high-purity multicrystalline silicon using a unidirectional solidification furnace for solar cells[J]. Journal of Crystal Growth, 2010, 312:1572-1576.
[9] GAO B, NAKANO S, KAKIMOTO K. Influence of reaction between silica crucible and graphite susceptor on impurities of multicrystalline silicon in a unidirectrional solidification furnace[J]. Journal of Crystal Growth, 2011, 314:239-245.
[10] NOZAKI T, YATSURUGI Y, AKIYAMA N. Concentration and behavior of carbon in semiconductor silicon[J]. Journal of the Electrochemical Society, 1970, 117(12):1566-1568.
[11] NEWMAN R C. Light impurities and their interactions in silicon[J]. Materials Science & Engineering:B, 1996, 36:1-12.
[12] BELLMANN M P, MEESE E A, ARNBERG L. Impurity segregation in directional solidified muti-crystalline silicon[J]. Journal of Crystal Growth, 2010, 312:3091-3095.
[13] 邓太平,毛文行,尹传强,等. 太阳能多晶硅锭中夹杂的物相与分布特性[J].材料科学与工程学报, 2008, 26(3):449-452. DENG T P, MAO W H, YIN C Q, et al. Phase and distribution of inclusions in multi-crystalline silicon ingot for solar wafers[J]. Journal of Materials Science & Engineering, 2008, 26(3):449-452.
[14] CHEN N, LIU B F, QIU S Y, et al. Study of SiC and Si3N4 inclusions in industrial multicrystalline silicon ingots grown by directional solidification method[J]. Materials Science in Semiconductor Processing, 2010, 13:231-238.
[15] LIU L J, NAKANO S, KAKIMOTO K. Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells[J]. Journal of Crystal Growth, 2008, 310:2192-2197.
[16] DROPKA N, FRANK-ROTSCH C, RUDOLPH P. Comparison of stirring efficiency of various non-steady magnetic fields during unidirectional solidification of large silicon melts[J]. Journal of Crystal Growth, 2013, 365:64-72.
[17] LINKE D, DROPKA N, KIESSLING F M,et al. Characterization of a 75 kg multicrystalline Si ingot grown in a KRISTMAG-type G2-sized directional solidification furnace[J]. Solar Energy Materials & Solar Cells, 2014, 130:652-660.
[18] KUDLA C, BLUMENAU A T, BULLESFELD F,et al. Crystallization of 640 kg mc-silicon ingots under traveling magnetic field by using a heater-magnet module[J]. Journal of Crystal Growth,2013, 365:54-58.
[19] KIESSLING F M, BULLESFELD F, DROPKA N,et al. Characterization of mc-Si directionally solidified in travelling magnetic fields[J].Journal of Crystal Growth, 2012,360:81-86.
[20] 周蔺桐,章爱生,尹传强,等. 硅熔体中碳化硅熔解与硅晶体中碳化硅生长[J].材料科学与工程学报, 2011, 29(5):761-765. ZHOU L T, ZHANG A S, YIN C Q, et al. Dissolution in silicon melt and growth in silicon crystals of SiC precipitates[J]. Journal of Materials Science & Engineering, 2011, 29(5):761-765.
[21] 毛文行,邓太平,杜国平,等. 太阳能多晶硅锭中硬质夹杂及其形成[J].南昌大学学报(理科版), 2008, 32(1):34-37. MAO W H, DENG T P, DU G P, et al. The hard inclusions in multi-crystalline silicon ingot and their formation[J]. Journal of Nanchang University (Natural Science), 2008, 32(1):34-37.
[22] ITOH Y, NOZAKI T, MASUI T,et al. Calibration curve for infrared spectrophotometry of nitrogen in silicon[J]. Applied Physics Letters, 1985, 47:488-489.
[23] LIU L J, NAKANO S, KAKIMOTO K. Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model[J]. Journal of Crystal Growth, 2006, 292:515-518.
[24] LUO D W, LONG J P. Formation and distribution of silicon carbide(SiC) precipitates in industrial directional solidification of mc-Si ingots[J]. Materials Research Innovations, 2014, 18(2):99-103.
[25] MOLLER H J, FUNKE C, KREΒNER-KIEL D, et al. Growth optimization of multicrystalline silicon[J]. Energy Procedia, 2011, 3:2-12.
[26] DALAKER H, TANGSTAD M. Time and temperature dependence of the solubility of carbon in liquid silicon equilibrated with silicon carbide and its dependence on boron levels[J]. Materials Transaction, 2009, 50(5):1152-1156.
[27] CHEN Y, DHANARAJ G, DUDLEY M. Thermodynamic studies of carbon in liquid silicon using the central atoms model[J]. Journal of the American Ceramic Society, 2006, 89(9):2922-2925.
[28] DALAKER H, TANGSTAD M. The interactions of carbon and nitrogen in liquid silicon[J]. High Temperature Materials and Processes, 2014, 33(4):363-368.
[29] SOILAND A K, OVRELID E J, ENGH T A, et al. SiC and Si3N4 inclusions in multicrystalline silicon ingots[J]. Materials Science in Semiconductor Processing, 2004, 7:39-43.
[30] REIMANN C, TREMPA M, FRIEDRICH J,et al. About the formation and avoidance of C and N related precipitates during directional solidification of multi-crystalline silicon from contaminated feedstock[J]. Journal of Crystal Growth, 2010, 312:1510-1516.
[31] ITOH T, ABE T. Diffusion coefficient of a pair of nitrogen atoms in float-zone silicon[J]. Applied Physics Letters, 1988, 53:39-41.
[32] 税琼,樊瑞新,杨德仁,等. 硅中氧氮扩散研究进展[J].半导体技术,1999,24(6):1-6. SHUI Q, FAN R X, YANG D R, et al. Diffusivity of oxygen and nitrogen in silicon[J]. Semiconductor Technology, 1999, 24(6):1-6.
[33] SHIMURA F, HOCKETT R S. Nitrogen effect on oxygen precipitation in Czochralski silicon[J]. Applied Physics Letters, 1986, 48:224-226.
[34] 李勇,钟尧,席珍强,等. 太阳电池用掺氮直拉单晶硅中氧沉淀行为的研究[J].材料科学与工程学报, 2006, 24(5):676-678. LI Y, ZHONG Y, XI Z Q, et al. Investigation of oxygen precipitation behavior in nitrogen-doped Czochralski silicon used for solar cells[J]. Journal of Materials Science & Engineering, 2006, 24(5):676-678.
[35] 杨德仁. 硅材料中氮的性质和研究[J].半导体技术, 1990, 4:47-50. YANG D R. Research of nitrogen properties in silicon[J].Semiconductor Technology, 1990, 4:47-50.
[36] 阙端麟. 单晶硅中氮杂质研究进展[J].人工晶体学报,2000, 29(5):3. QUE D L. Nitrogen in Cz silicon[J]. Journal of Synthetic Crystals, 2000, 29(5):3.
[37] QIN S Q,JIANG D C,TAN Y,et al.Behavior of carbon in electron beam melted mc-silicon[J].Vacuum,2015,121:207-211
[38] 李东升,杨德仁,朱爱平,等. 氮杂质对直拉单晶硅中位错的作[J].半导体学报,2001,22(11):1401-1405. LI D S, YANG D R, ZHU A P, et al. Effects of nitrogen on dislocations in CZ-silicon[J]. Chinese Journal of Semiconductors, 2001, 22(11):1401-1405.
[39] 杨德仁,阙端麟, KOJI S. 硅单晶中氮-氧复合体的红外吸收研究[J].红外与毫米波学报, 1995,14(6):441-446. YANG D R, QUE D L, KOJI S. Infrared absorption study of nitrogen-oxygen complex in silicon[J]. Journal of Infrared and Millimeter Waves, 1995, 14(6):441-446.
[40] ONO H, ISHIZUKA T, KATO C, et al. Microscopicdistributions of light elements and their precipitates in multicrystalline silicon for solar cells[J]. Japanese Journal of Applied Physics, 2010, 49:1-3.
[41] 杨德仁,阙端麟,SUMINO K. 高温退火硅单晶中氧和氮杂质性质[J].半导体学报, 1996, 17(1):71-75. YANG D R, QUE D L, SUMINO K. The behavior of nitrogen in silicon during heat treatment at high temperature[J]. Chinese Journal of Semiconductors, 1996, 17(1):71-75.
[42] 何友琴,马农农,王冬雪. 硅中氮的二次离子质谱(SIMS)定量分析[J].现代仪器, 2011,17(3):52-53. HE Y Q, MA N N, WANG D X. SIMS analysis of nitrogen concentration in silicon[J]. Modern Instruments, 2011,17(3):52-53.
[43] NARUSHIMA T, YAMASHITA A, OUCHI C,et al. Solubilities and equilibrium distribution coefficients of oxygen and carbon in silicon[J].Materials Transactions,2002,43(8):2120-2124.
[44] MOLLER H J, FUNKE C, LAWERENZ A,et al. Oxygen and lattice distortions in multicrystalline silicon[J]. Solar Energy Materials & Solar Cells, 2002, 72:403-416.
[45] 方昕,沈文忠.多晶硅中的氧碳行为及其对太阳电池转换效率的影响[J].物理学报, 2011, 60(8):1-12. FANG X, SHEN W Z. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency[J]. Acta Physica Sinica, 2011, 60(8):1-12.
[46] BOLOTOV V V, EFREMOV M D. Raman study of mechanical stresses in processes of oxygen precipitation in silicon[J]. Materials Science and Engineering:B, 1993, 21:49-54.
[47] MOLLER H J, LONG L, WERNER M,et al. Oxygen and carbon precipitation in multicrystalline solar silicon[J]. Physica Status Solidi A, 1999, 171:175-189.
[48] GAO B, CHEN X J, NAKANO S,et al. Crystal growth of high-purity multicrystalline silicon using a unidirectional solidification furnace for solar cells[J]. Journal of Crystal Growth, 2010, 312:1572-1576.
[49] NAKANO S, GAO B, KAKIMOTO K. Relationship Between oxygen impurity distribution in multicrystalline solar cell silicon and the use of top and side heaters during manufacture[J]. Journal of Crystal Growth, 2013, 375:62-66.
[50] NOOR UL HUDA KHAN ASGHAR H M, TAN Y, SHI S,et al. Removal of oxygen from silicon by electron beam melting[J]. Applied Physics A, 2014, 115:753-757.
[1] 孙东亚, 何丽雯, 廉冀琼, 谢安, 曾小兰, 杨若绵. 熔盐电解-区域熔炼法制备太阳能级硅的工艺研究[J]. 材料工程, 2015, 43(4): 73-78.
[2] 佘欢, 疏达, 储威, 王俊, 孙宝德. Fe和Si杂质元素对7×××系高强航空铝合金组织及性能的影响[J]. 材料工程, 2013, 0(6): 92-98.
[3] 张新明, 余翠娟, 刘胜胆, 刘星兴, 张盼, 王莹莹. Fe和Si杂质对Al-Zn-Mg-Cu合金淬火敏感性的影响[J]. 材料工程, 2013, 0(10): 41-47.
[4] 蔡建明, 马济民, 黄旭, 曹春晓. 高温钛合金中杂质元素Fe的扩散行为及其对蠕变抗力的损害作用[J]. 材料工程, 2009, 0(8): 84-88.
[5] 王宝如. 空心阴极光谱法分析铁镍基高温合金杂质[J]. 材料工程, 1999, 0(8): 41-43.
[6] 殷克勤. 提高铸造高温合金及其精铸件纯洁度的途径[J]. 材料工程, 1999, 0(7): 47-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn