Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (11): 9-12    DOI: 10.11868/j.issn.1001-4381.2015.11.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
化学气相沉积中的气相生长碳纤维
张保法
北京优材百慕航空器材有限公司, 北京 100095
Vapor Grown Carbon Fibers Produced in Chemical Vapor Deposition
ZHANG Bao-fa
Youcaitec Material Co., Ltd., Beijing 100095, China
全文: PDF(1808 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 用扫描电子显微镜观察了化学气相沉积过程中柔性石墨纸表面产生的热解炭的形态。研究发现:热解炭不仅呈胞状平铺在柔性石墨纸表面,而且还形成了气相生长碳纤维。这类特殊形态的碳纤维在直径较小时具有明显的生长尖端。随着气相生长碳纤维的生长,直径变大,由一层一层的热解炭组成同心圆结构,当气相生长碳纤维直径超过50μm时尖形头部变成半球形。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张保法
关键词 柔性石墨纸化学气相沉积气相生长碳纤维    
Abstract:The pyrolytic carbon produced on flexible graphite foil in chemical vapor deposition was observed by scanning electron microscope. The research shows that pyrolytic carbon is not only distributed on the surface of flexible graphite foils with the shape of cells, but also vapor grown carbon fibers are found. The initial carbon fibers have awl-shaped heads. With the growth of carbon fibers, the diameter of the fiber increases layer upon layer with a concentric circle structure. The vapor grown carbon fiber has a hemispherical head when the diameter exceeds 50μm.
Key wordsflexible graphite foil    chemical vapor deposition    vapor grown carbon fiber
收稿日期: 2014-04-18      出版日期: 2015-11-26
中图分类号:  TB332  
通讯作者: 张保法(1966-),男,高级工程师,博士,研究方向:C/C复合材料和C/SiC复合材料,联系地址:北京市81信箱26分箱(100095),bfzhang621@sohu.com     E-mail: bfzhang621@sohu.com
引用本文:   
张保法. 化学气相沉积中的气相生长碳纤维[J]. 材料工程, 2015, 43(11): 9-12.
ZHANG Bao-fa. Vapor Grown Carbon Fibers Produced in Chemical Vapor Deposition. Journal of Materials Engineering, 2015, 43(11): 9-12.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.11.002      或      http://jme.biam.ac.cn/CN/Y2015/V43/I11/9
[1] JACOBSEN R, TRITT T, GUTH J, et al. Mechanical properties of vapor-grown carbon fiber[J]. Carbon, 1995, 33(9):1217-1221.
[2] MOTOJIMA S, ASAKURA S, KASEMRUA T, et al. Catalytic effects of metal carbides, oxides and Ni single crystal on the vapor growth of microcoiled carbon fibers[J]. Carbon, 1996, 34(3):289-296.
[3] TING J, LAN V. Formation of nodulated vapor grown carbon fiber[J]. Carbon, 2000, 38(14):1917-1923.
[4] KIM Y, MATUSITA T, HAYASHI T, et al. Topological changes of vapor grown carbon fibers during heat treatment[J]. Carbon, 2001, 39(11):1747-1752.
[5] HASHISHIN T, IWANAGA H, ICHIHARA M, et al. Core structure of vapor grown carbon fibers and morphology dependence of tensile strength[J]. Carbon, 2003, 41(2):343-349.
[6] VAN HATTUM F, BENITO-ROMERO J, MADRONERO A, et al. Morphological, mechanical and interfacial analysis of vapour-grown carbon fibres[J]. Carbon, 1997, 35(8):1175-1183.
[7] LI Y, BAE S, SAKODA A, et al. Formation of vapor grown carbon fibers with sulfuric catalyst precursors and nitrogen as carrier gas[J]. Carbon, 2001, 39(1):91-100.
[8] BENISSAD-AISSANI F, AIT-AMAR H, SCHOULER M, et al. The role of phosphorus in the growth of vapour-grown carbon fibres obtained by catalytic decomposition of hydrocarbons[J]. Carbon, 2004, 42(11):2163-2168.
[9] JAYASANKAR M, CHAND R, GUPTH S, et al. Vapor-grown carbon fibers from benzene pyrolysis[J]. Carbon, 1995, 33(3):253-258.
[10] SERP P, FIGUEIREDO J. An investigation of vapor-grown carbon fiber behavior towards air oxidation[J]. Carbon, 1997, 35(5):675-683.
[11] ENDO M, KIM Y, HAYASHI T, et al. Vapor-grown carbon fibers(VGCFs) basic properties and their battery applications[J]. Carbon, 2001, 39(9):1287-1297.
[12] THING J M and LAKE M. Vapor-grown carbon-fiber reinforced carbon composites[J]. Carbon, 1995, 33(5):663-667.
[13] 黄玉安,叶德举,孙清,等. 气相生长炭纤维的表面改性及表征[J]. 无机化学学报,2006,22(3):403-410. HUANG Yu-an,YE De-ju,SUN Qing,et al. Surface modification and characterization of vapor grown carbon fibers[J].Chinese Journal of Inorganic Chemistry,2006,22(3):403-410.
[14] 朱春野,谢自立,郭坤敏. 气相生长纳米碳纤维的形态控制[J]. 无机材料学报,2004,19(3):599-604. ZHU Chun-ye,XIE Zi-li,GUO Kun-min. Morphology control of vapor grown carbon nanofibers[J]. Journal of Inorganic Materials, 2004,19(3):599-604.
[15] SHI X H, LI H J, FU Q G, et al. Carbon infiltration of carbon-fiber performs by catalytic CVI[J]. Carbon, 2006, 44(7):1198-1202.
[16] WEI B Q, VAJTAI R, AJAYAN P M. Sequence growth of carbon fibers and nanotube networks by CVD process[J]. Carbon, 2003, 41(1):185-188.
[17] MONTHIOUX M, ALLOUCHE H, JACOBSEN R L. Chemical vapour deposition of pyrolytic carbon on carbon nanotubes, Part 3:Growth mechanisms[J]. Carbon, 2006, 44(15):3183-3194.
[1] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[2] 张湘辉, 汪灵, 龙剑平, 朱必武, 陈伟, 冯艳华. 直流电化学两步处理精磨硬质合金表面对CVD金刚石涂层的影响[J]. 材料工程, 2011, 0(11): 89-96.
[3] 王洪磊, 周新贵, 于海蛟, 赵爽, 罗征. 气相渗硅工艺制备KD-1SiCf/SiC复合材料及其性能研究[J]. 材料工程, 2010, 0(11): 5-7,93.
[4] 郑文景, 周万城, 罗发, 于新民. SiC纤维表面C涂层的制备及介电性能研究[J]. 材料工程, 2009, 0(11): 36-39.
[5] 赵建国, 郭永, 冯锋, 张素芳, 王海青. 纳米电缆材料的研究进展[J]. 材料工程, 2008, 0(7): 83-87.
[6] 付志强, 周家斌, 王成彪, 唐春和, 梁彤祥, 赵宏生, ROBIN Jean-charles. 化学气相沉积法制备SiC/SiO2梯度复合涂层的热力学分析[J]. 材料工程, 2008, 0(6): 68-71.
[7] 黄志荣, 孙启凤, 罗小秋. HP40钢表面Al2O3薄膜制备及抑制结焦性能研究[J]. 材料工程, 2008, 0(2): 18-22.
[8] 张保法, 姜海, 李东生. 化学气相沉积炭对石墨材料氧化性能的影响[J]. 材料工程, 2007, 0(9): 34-36.
[9] 王应民, 杜楠, 蔡莉, 李禾, 程国安. PECVD法制备硅基ZnO薄膜光学性能的研究[J]. 材料工程, 2007, 0(11): 71-75.
[10] 张保法, 阮宏武, 李东生. 偏光观察C/C复合材料[J]. 材料工程, 2006, (1): 32-34.
[11] 井敏, 王成国, 朱波, 白玉俊, 王延相, 陈新谋. 射频直热法在碳纤维表面低温涂覆SiC涂层研究[J]. 材料工程, 2005, 0(8): 53-58.
[12] 刘荣军, 张长瑞, 周新贵, 曹英斌, 刘晓阳. CVD SiC致密表面涂层制备及表征[J]. 材料工程, 2005, 0(4): 3-6.
[13] 李国荣, 黄永秋, 潘鼎. n-C7H16/CCl4体系CVD-热解炭的形貌与形成机理[J]. 材料工程, 2004, 0(7): 51-54,63.
[14] 谈竞霜, 张保法, 姜海, 李东生. C/C刹车盘的结构及断口分析[J]. 材料工程, 2001, 0(7): 43-44.
[15] 戚学贵, 陈则韶, 王冠中. 热丝法化学气相沉积金刚石系统温度分布与薄膜生长关系研究[J]. 材料工程, 2001, 0(11): 31-34,16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn