Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (4): 47-55    DOI: 10.11868/j.issn.1001-4381.2017.000692
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
二维和零维纳米材料协同增强的高性能纳米复合材料
李曦()
海军工程大学 基础部化学与材料教研室, 武汉 430033
High-performance nanocomposites synergistically reinforced by 2-dimensional montmorillonite and 0-dimensional nano TiO2
Xi LI()
Department of Chemistry and Materials, Naval University of Engineering, Wuhan 430033, China
全文: PDF(9432 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

将二维蒙脱土和零维纳米TiO2共同复合到环氧树脂中,成功地制备出一种高性能有机蒙脱土/纳米TiO2/环氧树脂复合材料。力学性能测试和热分析显示,该复合材料在拉伸模量、拉伸强度、弯曲模量、弯曲强度、缺口冲击强度、玻璃化转变温度、热分解温度上都明显优于纯环氧树脂,也优于有机蒙脱土/环氧树脂复合材料和纳米TiO2/环氧树脂复合材料。XRD检测和透射电子显微镜观察显示,在有机蒙脱土/纳米TiO2/环氧树脂复合材料中,蒙脱土被完全剥离为纳米单片,和纳米TiO2交错分布于环氧树脂中。选择适宜的两种维度的纳米材料复合于聚合物中,是制备新型高性能复合材料的成功思路。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李曦
关键词 有机蒙脱土纳米TiO2维度环氧树脂纳米复合材料    
Abstract

Comprehensive high-performance epoxy nanocomposites were successfully prepared by co-incorporating 2-dimensional montmorillonite (MMT) and 0-dimensional nano TiO2 co-incorporated into epoxy. Mechanical tests and thermal analyses show that the resulting epoxy/MMT/nano TiO2 nanocomposites obtained are obviously superior to pure epoxy, epoxy/MMT nanocomposites, and epoxy/nano TiO2 nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temp-erature. X-ray diffraction and transmission electron microscopy inspection reveal that in the epoxy/MMT/nano TiO2 nanocomposites, the MMT is completely exfoliated into 2-dimensional nanoscale mono-platelets, which is intermingled with the 0-dimensional nano TiO2 spheres in epoxy resion. This study shows is that co-incorporating two proper, dimensionally different nanomaterials into polymer matrices could be a successful pathway in preparing comprehensive high-performance polymer nanocomposites.

Key wordsorgano MMT    nano TiO2    dimensionality    epoxy    nanocomposite
收稿日期: 2017-06-05      出版日期: 2019-04-19
中图分类号:  TB333  
基金资助:海军工程大学理学院基础研究基金资助项目(HGDLXY17ZK004)
通讯作者: 李曦     E-mail: lizhengxi_gg@163.com
作者简介: 李曦(1977-), 男, 讲师, 博士, 研究方向为有机-无机纳米复合材料, 联系地址:湖北省武汉市解放大道717号14邮箱(430033), E-mail:lizhengxi_gg@163.com
引用本文:   
李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
Xi LI. High-performance nanocomposites synergistically reinforced by 2-dimensional montmorillonite and 0-dimensional nano TiO2. Journal of Materials Engineering, 2019, 47(4): 47-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000692      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/47
Fig.1  X射线衍射图谱
Fig.2  TEM照片 (a)有机蒙脱土/环氧树脂复合材料(5phr);(b)纳米TiO2/环氧树脂复合材料(5phr);(c)有机蒙脱土/纳米TiO2/环氧树脂复合材料(5phr)
Fig.3  拉伸测试结果 (a)拉伸模量;(b)拉伸强度
Fig.4  弯曲测试结果 (a)弯曲模量;(b)弯曲强度
Fig.5  缺口冲击强度测试结果
Fig.6  材料的拉伸断口SEM形貌 (a)纯环氧树脂;(b)有机蒙脱土/环氧树脂复合材料(5phr);(c)纳米TiO2/环氧树脂复合材料(5phr);(d)有机蒙脱土/纳米TiO2/环氧树脂复合材料(5phr)
Fig.7  材料的弯曲断口SEM形貌 (a)纯环氧树脂;(b)有机蒙脱土/环氧树脂复合材料(5phr);(c)纳米TiO2/环氧树脂复合材料(5phr);(d)有机蒙脱土/纳米TiO2/环氧树脂复合材料(5phr)
Fig.8  材料的冲击断口SEM形貌 (a)纯环氧树脂;(b)有机蒙脱土/环氧树脂复合材料(5phr);(c)纳米TiO2/环氧树脂复合材料(5phr);(d)有机蒙脱土/纳米TiO2/环氧树脂复合材料(5phr)
Fig.9  热性能 (a)玻璃化转变温度;(b)热分解温度
1 KONDYURIN A , BILEK M . Etching and structure transforma-tions in uncured epoxy resin under RF-plasma and plasma immer-sion ion implantation[J]. Nucl Instrum Methods Phys Res Sec A, 2010, 268 (10): 1568- 1580.
doi: 10.1016/j.nimb.2010.03.014
2 JANG J S , VARISCHETTI J , LEE G W , et al. Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites[J]. Compos Part A, 2011, 42 (1): 98- 103.
doi: 10.1016/j.compositesa.2010.10.008
3 STRACHOTA A , RODZEŃ K , RIBOT F , et al. Tin-based "super-POSS" building blocks in epoxy nanocomposites with highly imp-roved oxidation resistance[J]. Polymer, 2014, 55 (16): 3498- 3515.
doi: 10.1016/j.polymer.2014.06.002
4 KINGSTON C , ZEPP R , ANDRADY A , et al. Release characte-ristics of selected carbon nanotube polymer composites[J]. Carbon, 2014, 68 (3): 33- 57.
5 LIU Y , KUMAR S . Polymer/carbon nanotube nano composite fibers-a review[J]. ACS Appl Mater Interfaces, 2014, 6 (9): 6069- 6087.
doi: 10.1021/am405136s
6 YUAN B , BAO C , SONG L , et al. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization beha-vior and mechanical properties[J]. Chem Eng J, 2014, 237 (5): 411- 420.
7 张林, 陈多礼, 朱旻昊, 等. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45 (3): 7- 12.
7 ZHANG L , CHEN D L , ZHU M H , et al. Effect of graphene oxide on anti-aging property of nitrile butadiene rubber[J]. Journal of Materials Engineering, 2017, 45 (3): 7- 12.
8 马强, 罗静, 陈元勋, 等. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44 (9): 109- 114.
8 MA Q , LUO J , CHEN Y X , et al. Preparation and performance of amphiphilic random copolymer noncovalently modified MWCNTS/epoxy composite[J]. Journal of Materials Engineering, 2016, 44 (9): 109- 114.
9 郑辉东, 欧忠星, 郑玉婴, 等. 功能石墨烯/热塑性聚氨酯复合材料膜的制备及性能[J]. 材料工程, 2016, 44 (11): 114- 119.
doi: 10.11868/j.issn.1001-4381.2016.11.019
9 ZHENG H D , OU Z X , ZHENG Y Y , et al. Preparation and properties of functional graphene/thermoplastic polyurethane composite film[J]. Journal of Materials Engineering, 2016, 44 (11): 114- 119.
doi: 10.11868/j.issn.1001-4381.2016.11.019
10 AMIT C , MUHAMMAD S I . Fabrication and characterization of TiO2-epoxy nanocomposite[J]. Materials Science and Engin-eering:A, 2008, 487 (1): 574- 585.
11 DEAN D , WALKER R , THEODORE M , et al. Chemorheology and properties of epoxy/layered silicate nanocomposites[J]. Polymer, 2005, 46 (9): 3014- 3021.
doi: 10.1016/j.polymer.2005.02.015
12 CHEN C G , JUSTICE R S , SCHAEFER D W , et al. Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties[J]. Polymer, 2009, 49 (17): 3805- 3815.
13 AKBARI B , BAGHERI R . Deformation mechanism of epoxy/clay nanocomposite[J]. European Polymer Journal, 2007, 43 (3): 782- 788.
doi: 10.1016/j.eurpolymj.2006.11.028
14 LI X , ZHAN Z J , PENG G R , et al. Epoxy nanocomposites co-reinforced by two dimensionally different nanoscale particles[J]. Polymer Science Series B, 2011, 53 (12): 595- 600.
15 王其磊. 磁性MH/Fe3O4/SR复合材料的耐热机理及摩擦性能[J]. 材料工程, 2015, 43 (10): 73- 78.
doi: 10.11868/j.issn.1001-4381.2015.10.012
15 WANG Q L . Heat-resistant mechanism and friction property of magnetic MH/Fe3O4/SR composites[J]. Journal of Materials Engineering, 2015, 43 (10): 73- 78.
doi: 10.11868/j.issn.1001-4381.2015.10.012
16 KADAMBI S B , PRAMODA K , RAMAMURTY U , et al. Carbon-nanohorn-reinforced polymer matrix composites:syner-getic benefits in mechanical properties[J]. ACS Appl Mater Interfaces, 2015, 7 (31): 17016- 17022.
doi: 10.1021/acsami.5b02792
17 KARIMI A , WAN DAUD W M A . Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels:a review[J]. Polym Compos, 2015, 49 (7): 1763- 1767.
18 索军营, 李帆, 李璐璐, 等. 蒙脱土纳米增强二苯醚亚苯基硅橡胶的阻隔性能研究[J]. 航空材料学报, 2015, 35 (2): 77- 82.
18 SUO J Y , LI F , LI L L , et al. Barrier effect of montmo-rillonitenano-reinforcing diphenyl ether phenylene silicone rubber[J]. Journal of Aeronautical Materials, 2015, 35 (2): 77- 82.
19 QUARESIMIN M , VARLEY R J . Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates[J]. Compos Sci Technol, 2008, 68 (3/4): 718- 726.
20 HUSSAIN F , CHEN J H , HOJJATI M . Epoxy-silicate nanocomposites:cure monitoring and characterization[J]. Mat Sci Eng A, 2007, 445 (6): 467- 476.
21 DEANA D , WALKERB R , THEODOREB M , et al. Chemo-rheology and properties of epoxy/layered silicate nanocomposites[J]. Polymer, 2005, 46 (9): 3014- 3021.
doi: 10.1016/j.polymer.2005.02.015
22 XIE W , GAO Z , PAN W P , et al. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite[J]. Chem Mat-er, 2001, 13 (9): 2979- 2990.
doi: 10.1021/cm010305s
23 GAO F G . Clay/polymer composites:the story[J]. Mater Today, 2004, 7 (11): 50- 55.
doi: 10.1016/S1369-7021(04)00509-7
24 WANG J W , QIN S C . Study on the thermal and mechanical properties of epoxy-nanoclay composites:the effect of ultrasonic stirring time[J]. Mater Lett, 2007, 61 (19/20): 4222- 4224.
25 MAROUF B T , MAI Y W , BAGHERI R , et al. Toughening of epoxy nanocomposites:nano and hybrid effects[J]. Polym Rev, 2016, 56 (1): 70- 112.
doi: 10.1080/15583724.2015.1086368
26 WU Z , WAN M , WANG Z . The gas phase SiO2/epoxy nanoco-mposites with enhanced mechanical and thermal properties[J]. High Perform Polym, 2015, 27 (4): 469- 475.
doi: 10.1177/0954008314555528
27 PUGLIA D , FORTUNATI E , D'AMICO D A , et al. Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films[J]. Polym Degrad Stab, 2014, 99 (13): 127- 135.
28 SARAVANAN S , RAMAMURTHY P C , MADRAS G . Effects of temperature and clay content on water absorption character-istics of modified MMT clay/cyclic olefin copolymer nanocom-posite films:permeability, dynamic mechanical properties and the encapsulated organic device performance[J]. Compos Part B, 2015, 73 (10): 1- 9.
29 JOHNSEN B B , KINLOCH A J , MOHAMMED R D , et al. Toughening mechanisms of nanoparticle-modified epoxy polyme-rs[J]. Polymer, 2007, 48 (2): 530- 541.
doi: 10.1016/j.polymer.2006.11.038
30 MASOOMEH G , MASOUD J . Hybridizing MWCNT with nano metal oxides and TiO2 in epoxy composites:influence on mech-anical and thermal performances[J]. J Appl Polym Sci, 2016, 133 (34): 43834.
31 CHEN C , MORGAN A B . Mild processing and characterization of silica epoxy hybrid nanocomposite[J]. Polymer, 2009, 50 (26): 6265- 6273.
doi: 10.1016/j.polymer.2009.11.002
32 DZUHRI S , YUHANA N Y , KHAIRULAZFAR M . Thermal stability and decomposition study of epoxy/clay nanocomposites[J]. Sains Malaysiana, 2015, 44 (3): 441- 448.
doi: 10.17576/jsm
33 ROLDUGHIN V I , SERENKO O A , GETMANOVA E V , et al. Effect of hybrid nanoparticles on glass transition temperature of polymer nanocomposites[J]. Polymer Composites, 2016, 37 (7): 1978- 1990.
doi: 10.1002/pc.v37.7
[1] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[2] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[3] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[4] 李华鹏, 董旭晟, 孙彬, 周国伟. TiO2/MXene纳米复合材料的可控制备及在光催化和电化学中的应用研究进展[J]. 材料工程, 2021, 49(8): 54-62.
[5] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[6] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[7] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[8] 王钰登, 郑亚萍, 宋珊, 姚东东. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156-163.
[9] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[12] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[13] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn