Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (8): 36-42    DOI: 10.11868/j.issn.1001-4381.2017.001003
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响
邢星河, 曹峰, 彭志航(), 曾祥雄
国防科技大学 新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
Effect of Co Doping on the Structural and Electrical Properties of CaBi2Nb2O9 Ceramics
Xing-he XING, Feng CAO, Zhi-hang PENG(), Xiang-xiong ZENG
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
全文: PDF(3437 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用传统固相反应法制备CaBi2Nb2-xCoxO9(CBNCo)陶瓷,研究Co掺杂对其微观结构、介电、压电以及电导性质的影响。结果表明:Co掺杂的CBN陶瓷为正交晶系结构,其中,CaBi2Nb1.95Co0.05O9陶瓷有杂相生成。所有CBNCo陶瓷均有较高致密性,烧结效果较好。Co的加入使CBN陶瓷烧结密度明显提高,压电性能得到改善;加入Co改性后,CBN陶瓷介电损耗均明显降低,居里温度略微增加。同时,Co的加入引入了更多缺陷,使导电机理有所改变。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢星河
曹峰
彭志航
曾祥雄
关键词 掺杂压电性能介电性能直流电阻缺陷    
Abstract

CaBi2Nb2-xCoxO9 ceramics were prepared by a solid-state reaction method. The effect of Co doping on their piezoelectric, dielectric and conductive properties was studied. The results show that the structure of Co doped CBN ceramics is the orthorhombic symmetry and CaBi2Nb1.95Co0.05O9 ceramics are found with impurity phase. All of the CBNCo ceramics have compact structures and are in good sinter condition. The density and the piezoelectric activity of CBN ceramics are obviously improved with Co doping contents. Co dopant greatly decreases the dielectric loss values and slightly increases the Curie-temperature of CBN ceramics. Meanwhile, the introduction of Co dopant increases the number of defects and thus changes the conductive mechanism.

Key wordsdoping    piezoelectric property    dielectric property    DC resistivity    defect
收稿日期: 2017-08-07      出版日期: 2018-08-17
中图分类号:  TM282  
基金资助:国防科学技术大学科研计划项目(ZK16-03-17)
通讯作者: 彭志航     E-mail: 231185939@qq.com
作者简介: 彭志航(1987-), 男, 讲师, 博士, 主要研究方向为铋层状压电陶瓷, 联系地址:湖南省长沙市开福区德雅路253号国防科技大学新型陶瓷纤维及其复合材料重点实验室(410073), E-mail:231185939@qq.com
引用本文:   
邢星河, 曹峰, 彭志航, 曾祥雄. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程, 2018, 46(8): 36-42.
Xing-he XING, Feng CAO, Zhi-hang PENG, Xiang-xiong ZENG. Effect of Co Doping on the Structural and Electrical Properties of CaBi2Nb2O9 Ceramics. Journal of Materials Engineering, 2018, 46(8): 36-42.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001003      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/36
Fig.1  不同Co含量CBN陶瓷的XRD图谱(a)及(008),(115)峰局部峰放大图(b)
Fig.2  不同掺杂量x的CBNCo陶瓷的晶格参数
Parameter CBN CBNCo-1 CBNCo-3 CBNCo-5
Unit cell volume/nm3 0.7396 0.7412 0.7423 0.7422
Lattice distortion 0.00796 0.00782 0.00802 0.00783
Table 1  不同Co含量CBN陶瓷的晶胞体积和晶格畸变
Fig.3  不同Co掺杂量CBNCo陶瓷的扫描电镜图像
(a)CBN; (b)CBNCo-1;(c)CBNCo-3;(d)CBNCo-5
Fig.4  CBNCo陶瓷的XPS谱图(a)100~820eV; (b)Nb 3d;(c)Co 2p;(d)Bi 4f;(e)O 1s
Parameter CBN
-1050℃
CBNCo-1
-1050℃
CBNCo-3
-1050℃
CBNCo-5
-1050℃
CBN
-1100℃
CBNCo-1
-1100℃
CBNCo-3
-1100℃
CBNCo-5
-1100℃
ρrd/% 98.5 97.1 99.3 97.3 99.0 99.7 96.2 96.4
d33/(pC·N-1) 4.1 9.7 12.1 9.4 5.0 12.7 9.6 8.7
Table 2  不同CBNCo陶瓷在1100℃及1050℃下密度和压电常数
Fig.5  不同样品的介电常数(a)和介电损耗(b)与温度的关系
Fig.6  CBNCo陶瓷的压电常数(d33)随退火温度的变化
Fig.7  不同样品直流电阻率和温度的关系图
Sample Ea/eV Eb/eV (Eb- Ea)/eV Resistivity at500℃ /(Ω·cm)
CBN 1.12 1.30 0.18 0.78×106
CBNCo-1 1.04 1.23 0.19 1.41×106
CBNCo-3 0.80 1.16 0.36 2.00×106
CBNCo-5 0.88 1.28 0.40 7.24×106
Table 3  CBNCo陶瓷低温和高温下的电导激活能以及500℃时的电阻率表
1 ZHANG S , YU F , JIANG X , et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers[J]. Progress in Materials Science, 2015, 68, 1- 66.
doi: 10.1016/j.pmatsci.2014.10.002
2 PENG Z H , ZENG X X , XIANG Y , et al. Dielectric relaxation behavior of Mn-modified Ca0.9Pr0.05[]0.05Bi2Nb2O9-based high temperature piezoceramics[J]. Ceramics International, 2017, 43, 1249- 1255.
doi: 10.1016/j.ceramint.2016.10.072
3 刘军凯. 高居里温度压电材料研究进展[J]. 压电与声光, 2012, 34 (1): 100- 105.
doi: 10.11977/j.issn.1004-2474.2012.01.026
3 LIU J K . Current development of piezoelectric materials with high Curie temperature[J]. Piezoelectrics and Acoustooptics, 2012, 34 (1): 100- 105.
doi: 10.11977/j.issn.1004-2474.2012.01.026
4 ZHANG S , YU F . Piezoelectric materials for high temperature sensor[J]. Journal of the American Ceramic Society, 2011, 94 (10): 3153- 3170.
doi: 10.1111/j.1551-2916.2011.04792.x
5 廖运文, 肖定全. 无铅压电陶瓷Bi0.5(Na0.90-xKxLi0.10)0.5TiO3-KNbO3的微结构与电学性能[J]. 材料工程, 2008, (5): 39- 42.
5 LIAO Y W , XIAO D Q . Microstructure and electrical properties of Bi0.5(Na0.90-xKxLi0.10)0.5TiO3-KNbO3 Lead-free Piezoelectric Ceramics[J]. Journal of Materials Engineering, 2008, (5): 39- 42.
6 PARK B H , KANG B S , BU S D , et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories[J]. Nature, 1999, 401 (6754): 682- 684.
doi: 10.1038/44352
7 YAO Z , LIU H , LIU Y , et al. High-temperature relaxor cobalt-doped (1-x)BiScO3-xPbTiO3 piezoelectric ceramics[J]. Applied Physics Letters, 2008, 92 (14): 142905.
doi: 10.1063/1.2904615
8 XU Q , CHEN M , CHEN W , et al. Effect of CoO additive on structure and electrical properties of (Na0.5Bi0.5)0.93Ba0.07TiO3 ceramics prepared by the citrate method[J]. Acta Materialia, 2008, 56 (3): 642- 650.
doi: 10.1016/j.actamat.2007.10.014
9 HOU J , QU Y , VAISH R , et al. Effect of Sb Substitution on the structural and electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics[J]. Journal of the American Ceramic Society, 2011, 94 (8): 2523- 2529.
doi: 10.1111/jace.v94.8
10 ZHAO T L , GUO Z L , WANG C M . The Effects of Na/K ratio on the electrical properties of sodium-potassium bismuth titanate Na0.5Bi4.5Ti4O15-K0.5Bi4.5Ti4O15[J]. Journal of the American Ceramic Society, 2012, 95 (3): 1062- 1067.
11 YAN H, ZHANG H, UBIC R, et al. A lead-free high-curie-point ferroelectric ceramic CaBi2Nb2O9, Advanced Materials[J]. 2005, 17: 1261-1265.
12 WANG C M , WANG J F , ZHANG S , et al. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics[J]. Physica Status Solidi-rapid Research Letters, 2009, 3 (2/3): 49- 51.
13 ZHANG X , YAN H , REECE M J . Effect of A site substitution on the properties of CaBi2Nb2O9, ferroelectric ceramics[J]. Journal of the American Ceramic Society, 2008, 91 (9): 2928- 2932.
doi: 10.1111/jace.2008.91.issue-9
14 TIAN X , QU S B , DU H L , et al. Effects of (LiCe) co-substitution on the structural and electrical properties of CaBi2Nb2O9 ceramics[J]. Chinese Physics B, 2012, 21 (3): 37701- 37705.
doi: 10.1088/1674-1056/21/3/037701
15 WANG C M. High temperature piezoelectric properties of Cr-modified calcium bismuth niobate (CaBi2Nb2O9)[EB/OL]. Beijing: China's Scientific and Technical Papers Online, [2013-02-01]. http://www.paper.edu.cn/releasepaper/content/201302-211.
16 贾菲, 林声和. 压电陶瓷[M]. 北京: 科学出版社, 1979.
16 JA F , LIN S H . Piezoelectric ceramics[M]. Science Press, 1979.
17 WANG C M , ZHAO L , WANG J F , et al. Enhanced piezoelectric properties of sodium bismuth titanate (Na0.5Bi4.5Ti4O15) ceramics with B-site cobalt modification[J]. Physica Status Solidi-rapid Research Letters, 2009, 3 (1): 7- 9.
doi: 10.1002/pssr.v3:1
18 DIAO C L , XU J B , ZHENG H W , et al. Dielectric and piezoelectric properties of cerium modified BaBi4Ti4O15 ceramics[J]. Ceramics International, 2013, 39 (6): 6991- 6995.
doi: 10.1016/j.ceramint.2013.02.036
19 SIMÕES A Z , RICCARDI C S , CAVALCANTE L S , et al. Impact of oxygen atmosphere on piezoelectric properties of CaBi2Nb2O9 thin films[J]. Acta Materialia, 2007, 55 (14): 4707- 4712.
doi: 10.1016/j.actamat.2007.04.030
20 BATRA V , RAMANA C V , KOTRU S . Annealing-induced changes in chemical bonding and surface characteristics of chemical solution deposited Pb0.54Ti0.46O3 thin films[J]. Applied Surface Science, 2016, 379, 191- 198.
doi: 10.1016/j.apsusc.2016.03.152
21 KESWANI B C , DEVAN R S , KAMBALE R C , et al. Correlation between structural, magnetic and ferroelectric properties of Fe-doped (Ba-Ca)TiO3 lead-free piezoelectric[J]. Journal of Alloys and Compounds, 2017, 712, 320- 333.
doi: 10.1016/j.jallcom.2017.03.301
22 DEVAN R S , LIN C L , GAO S Y , et al. Enhancement of green-light photoluminescence of Ta2O5 nanoblock stacks[J]. Physical Chemistry Chemical Physics, 2011, 13 (29): 13441- 13446.
doi: 10.1039/c1cp21283d
23 陈新亮. 氧化物添加剂对组成在MPB附近的(Na0. 5Bi0. 5)(1-x)BaxTiO3陶瓷结构和电学性能的影响[D]. 武汉: 武汉理工大学, 2006.
23 CHEN X L. Effect of Oxide Additives on structure and electrical properties of (Na0. 5Bi0. 5)(1-x)BaxTiO3 ceramic with a composition near MPB[D]. Wuhan: Wuhan University of Technology, 2006.
24 GUO Z L , WANG C M , ZHAO T L , et al. Piezoelectric properties and thermal stabilities of cobalt-modified potassium bismuth titanate[J]. Materials Chemistry and Physics, 2013, 140 (1): 260- 265.
doi: 10.1016/j.matchemphys.2013.03.032
25 曹全喜, 周晓华. Co3O4在压敏陶瓷中的作用和影响[J]. 压电与声光, 1996, 18 (4): 260- 263.
25 CAO Q X , ZHOU X H . Influence of Co3O4 on ZnO ceramic varistor[J]. Piezoelectric and Acoustoopics, 1996, 18 (4): 260- 263.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 唐婧缘, 龙依婷, 黄旭, 蒲琳钰. 核-双壳BT@TiO2@PDA纳米粒子的制备及其复合薄膜的介电性能[J]. 材料工程, 2022, 50(9): 59-69.
[3] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[4] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[5] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[6] 韩启飞, 符瑞, 胡锦龙, 郭跃岭, 韩亚峰, 王俊升, 纪涛, 卢继平, 刘长猛. 电弧熔丝增材制造铝合金研究进展[J]. 材料工程, 2022, 50(4): 62-73.
[7] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[8] 姜莹, 申心畅, 郭丽敏, 毕科, 王晓慧, 李龙土. 陶瓷电介质储能材料研究进展[J]. 材料工程, 2022, 50(4): 96-103.
[9] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
[10] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[11] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[12] 高祥熙, 杨平华, 乔海燕, 张帅. 基于μCT表征的SLM成形GH3536高温合金缺陷特征[J]. 材料工程, 2022, 50(10): 63-72.
[13] 吴冰, 刘磊, 王献志, 肖潇, 杨豹, 赵锦涛, 古成前, 马雷. Y3+掺杂Li4Ti5O12负极材料的电荷输运特性及电化学性能研究[J]. 材料工程, 2022, 50(10): 102-110.
[14] 张少威, 蒲秀好, 万艳红, 祝康, 夏长荣. 掺杂对Sr2Fe1.5Mo0.5O6-δ阳极材料电化学性能影响研究进展[J]. 材料工程, 2021, 49(9): 1-13.
[15] 王志成, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光, 杨万鹏, 岳晓岱. 单晶高温合金雀斑研究进展[J]. 材料工程, 2021, 49(7): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn