采用小波多分辨分析和快速傅里叶变换,对焊接裂纹金属磁记忆信号进行了处理,找出了焊接裂纹存在的磁记忆信号的判据特征,并建立了该特征的阈值.现场检测结果表明:采用小波多分辨分析和快速傅里叶变换得出的特征,可以准确判断出裂纹等缺陷是否存在.
Abstract
Based on multiscale wavelet analysis and fast Fourier transform,metal magnetic memory signals were processed for welding cracks.A criterion feature to identify the existence of welding cracks was found out.Corresponding threshold value of the feature was established.Field inspection indicated that welding cracks could be accurately identified with the criterion feature.
关键词
金属磁记忆 /
小波分析 /
多尺度 /
特征提取
{{custom_keyword}} /
Key words
metal magnetic memory /
wavelet analysis /
multiscale /
feature extraction
{{custom_keyword}} /
中图分类号:
TG115.28
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 任吉林,林俊明,池永滨,等.金属磁记忆技术[M].北京:电力出版社,2000.
[2] DUBOV A.Principle features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods[J].CINDE Journal,2006,27(3):16-20.
[3] YAMASAKI T,YAMAMOTO S,HIRAO M.Effect of applied stresses on magnetostriction of low carbon steel[J].NDT&E International,1996,29(5):263-268.
[4] DOUBOV A A.About physical base of method of metal magnetic memory[A].8th ECNDT Proceedings[C].Spain:Barcelona,2002.
[5] HUANG Song-ling,LI Lu-ming,SHI Ke-ren,et al.Magnetic field properties caused by stress concentration[J].Journal of Central South University of Technology,2004,11(1):23-26.
[6] 邸新杰.焊接裂纹的金属磁记忆漏磁场特性的初步研究[D].天津:天津大学材料科学与工程学院,2004.
[7] 严春妍.焊接裂纹的金属磁记忆信号特征判据的研究[D].天津:天津大学材料科学与工程学院,2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(50475113);高等学校博士学科点专项基金资助项目(20030056002)
{{custom_fund}}