新型耐热钢Super304H高温时效后的组织与性能

李新梅, 邹勇, 张忠文, 邹增大

材料工程 ›› 2009, Vol. 0 ›› Issue (5) : 38-42.

PDF(976 KB)
PDF(976 KB)
材料工程 ›› 2009, Vol. 0 ›› Issue (5) : 38-42.
测试与表征

新型耐热钢Super304H高温时效后的组织与性能

  • 李新梅1, 邹勇2, 张忠文3, 邹增大1
作者信息 +

Microstructure and Property of Novel Heat-resistance Steel Super304H After Being Aged at High Temperature

  • LI Xin-mei1, ZOU Yong2, ZHANG Zhong-wen3, ZOU Zeng-da1
Author information +
文章历史 +

摘要

采用光学显微镜、扫描电子显微镜及X射线衍射等手段并通过显微硬度和冲击实验,研究了Supre304H钢经750~1350℃时效后的微观组织和性能.结果表明:高温时效后Super304H钢的微观组织为γ相+析出相;随时效温度的不同,基体晶粒尺寸及析出相的种类、分布发生不同的变化.在750℃左右因微细沉淀强化及细晶组织使得显微硬度达到最大值,而后随温度升高以及析出相、晶粒尺寸与固溶元素的变化,显微硬度呈现先快速下降后缓慢下降的趋势;时效试样的冲击功值随温度升高在850℃左右,由于M23C6沿晶界大量析出导致晶界脆化而达到最低值,后又因析出相的再溶解致使晶界脆化效果趋弱而逐渐升高.

Abstract

The microstructure and property of novel austenitic heat-resistance steel Super304H after being aged at 750-1350℃ were investigated by the means of optical microscope,scanning electron microscopy(SEM),X-ray diffraction(XRD),as well as hardness testing and impact test.The experimental results indicated that the microstructure of super304H after being aged included γ-phase and precipitated phase.With the variation of aging temperature,the grain size of matrix and the type of precipitated phase will be changed.When the sample was aged at 750℃,the hardness reached the maximum value due to the precipitation strengthening and fine microstructure.With increasing the aging temperature beyond 750℃,the microhardness rapidly decreased at first and then decreased slowly because of the variation of precipitated phase,grain size and solid solution elements.The impact energy value of aged sample increased before being aged at 850℃,and reached minimum when aged at 850℃ due to M23C6 precipitated along grain boundary and caused embrittlement.The impact energy increased again with increasing aging temperature,because the precipitated phase redissolved and eliminating the grain boundary embrittlement.

关键词

Super304H钢 / 时效处理 / 析出相 / 组织 / 性能

Key words

Super304H steel / aging treatment / precipitated phase / microstructure / property

引用本文

导出引用
李新梅, 邹勇, 张忠文, 邹增大. 新型耐热钢Super304H高温时效后的组织与性能[J]. 材料工程, 2009, 0(5): 38-42
LI Xin-mei, ZOU Yong, ZHANG Zhong-wen, ZOU Zeng-da. Microstructure and Property of Novel Heat-resistance Steel Super304H After Being Aged at High Temperature[J]. Journal of Materials Engineering, 2009, 0(5): 38-42
中图分类号: TG142.1    TG142.7   

参考文献

[1] 杨富,章应霖,任永宁,等.新型耐热钢焊接[M].北京:中国电力出版社,2006.143-157.
[2] IGARASHI M.Creep Properties of Heat Resistant Steels and Superalloys[M].Springer:Springer Berlin Heidelberg,2004.260-264.
[3] SAWARAGI Y,HIRANO S.Development of a new 18-8 austenitic steel(0.1C-18Cr-9Ni-3Cu-Nb,N)with high elevated temperature strength for fossil fired boilers[A].New Alloys for Pressure Vessels and Piping[C].New York:American Society of Mechanical Engineers(ASME)Press,1990.141-146.
[4] SAWARAGI Y,OGAWA K,KATO S,et al.Development of the economical 18-8 stainless steel(Super304H)having high elevated temperature strength for fossil fired boillers[J].The Sumitomo Search,1992,48(1):50-58.
[5] KAN T,SAWARAGI Y,YAMADERA Y,et al.Properties and experiences of a new austenitic stainless steel Super304H(0.1C-18Cr-9Ni-3Cu-Nb-N)tubes for boiler tube application[A].Materials for Advanced Power Engineering[C].Julich:Forschungszentrum Julich Press,1998.441-450.
[6] SAWARAGI Y,OTSUKA N,SENBA H,et al.Properties of a new 18-8 austenitic steel tube(SUPER 304H)for fossil fired boilers after service exposure with high elevated temperature strength[J].Sumitomo Search,1994,56:34-43.
[7] NOGUCHI Y,MIYAHARA M,OKADA H,et al.Effect of grain size on creep-fatigue properties of 18Cr-9Ni-3Cu-Nb-N steel under uniaxial and torsional loading[J].Zairyo/Journal of the Society of Materials Science,2007,56(2):136-141.
[8] 杨岩,程世长,杨钢.Super304H锅炉用钢的开发和研究现状[J].特殊钢,2002,23(1):27-29.
[9] 杨岩,程世长,杨钢.铜含量对Super304H钢持久性能的影响[J].机械工程材料,2002,26(10):23-25.
[10] 郭富强,程世长,刘正东,等.碳、铌对ASME S30432奥氏体耐热钢晶间腐蚀性能的影响[J].机械工程材料,2007,31(8):11-14.
[11] 方旭东,王辉锦,田晓青,等.1000MW超超临界电站锅炉用S30432耐热不锈钢管的开发[J].太钢科技,2007,(2):22-27.
[12] 朱平,赵建仓,柴晓岩,等.Super304H奥氏体耐热钢焊接材料匹配与接头性能研究[J].电力设备,2007,8(4):43-46.
[13] 彭芳芳,朱国良,宋建新.超(超)临界发电机组用Super304H钢管关键制造工艺的分析[J].特殊钢,2008,29(3):42-43.
[14] 王剑志,罗仕清,黄晓斌.超(超)临界锅炉用Super304H钢管研究试制[J].钢铁,2006,41(1):43-46.
[15] 肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006.47-48.
[16] GB/T229-1994,金属夏比缺口冲击试验方法[S].
[17] GB/T6394-2002,金属平均晶粒度测定方法[S].
[18] 雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.10-20.
[19] 齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006.6-23.

基金

山东省电力集团公司重点科技项目(2007A-47)
PDF(976 KB)

1198

Accesses

0

Citation

Detail

段落导航
相关文章

/