高温钛合金是先进航空发动机压气机应用的理想材料,代替钢或镍基高温合金,可以显著提高发动机的推重比和服役性能.随着钛合金使用温度的提高,高温蠕变抗力越来越成为影响其使用温度和使用寿命最关键的力学性能.在400~600℃的温度范围内,钛合金的蠕变变形一般受位错攀移机制所控制,蠕变激活能近似等于有效扩散激活能,因此,扩散是影响钛合金高温蠕变抗力的最主要因素.杂质元素Fe在钛合金中具有反常大的扩散能力,是Ti自扩散系数的103~105倍,在Ti中的扩散可能受离解扩散机制所控制.钛合金中的微量Fe同时会显著促进Ti的自扩散,提高位错攀移速率,从而降低蠕变抗力.为了改善高温钛合金的蠕变性能,需要严格控制原材料如海绵钛和中间合金中杂质Fe的含量.
Abstract
High temperature titanium alloys were idea materials for advanced aero-engine compressor use due to their excellent contribution to the spectacular progress in thrust-to-mass ratio and operating performances,which had been achieved through the substitution of titanium alloys for steel or Ni-based superalloys.With increasing the operating temperature of titanium alloys,creep resistance becomes the most important mechanical property which may affect the operating temperature and service lifetime.Over the temperature range from 400℃ to 600℃,creep deformation of titanium alloys is primarily controlled by dislocation climb mechanism,the activation energy of creep is close to the activation energy of effective diffusion.Therefore,diffusion plays an important role in dominating creep resistance for high temperature titanium alloys.The impurity iron has an abnormal high diffusion ability which is 103-105 times as large as that of self-diffusion in titanium,and may be attributed to the dissociative diffusion mechanism.Meanwhile,trace iron may promote the self-diffusion of Ti,thus may increase the dislocation climb rate and reduce the creep resistance.In order to improve the creep resistance of high temperature titanium alloys,the content of impurity iron must be carefully restricted in the raw materials such as titanium sponge and master alloys.
关键词
高温钛合金 /
杂质元素Fe /
扩散行为 /
蠕变抗力
{{custom_keyword}} /
Key words
high temperature titanium alloy /
impurity iron /
diffusion behavior /
creep resistance
{{custom_keyword}} /
中图分类号:
TG146.2+3
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WINSTONE M R,PARTRIDGE A,BROOKS J W.The contribution of advanced high-temperature materials to future aeroengine[A].Proceedings of the Institution of Mechanical Engineers,Part K[C].Cambridge,UK:Journal of Multi-body Dynamics,2001.63-73.
[2] HICKS M A,THOMAS M C.Advances in aeroengine materials[A].Proceedings of the 6th International Charles Parsons Turbine Conference[C].Ireland:Trinity College Dublin,2003.43-56.
[3] HELM D.Application of high temperature titanium alloys in aero-engine-limits due to bulk and surface related properties[A].Titanium Alloys for High Temperature Applications[C].San Antonio:TMS,2006.3-12.
[4] L(U)TJERING G,WILLIAMS J C.Titanium[M].Berlin:Springer,2003.238.
[5] ROSENBERG H W.Titanium alloying in theory and practice[A].The Science,Technology and Application of Titanium[C].Oxford,UK:Pergamon Press,1970.851-859.
[6] BLACKBURN M J.The ordering transformation in titanium:aluminum alloys containing up to 25 at.pct aluminum[J].Trans of the Metal Society of AIME,1967,239:1200-1208.
[7] L(U)TJERING G,WEISSMANN S.Mechanical properties of age-hardened titanium-aluminum alloys[J].Acta Metall,1970,18:785-795.
[8] WOODFIELD A P,POSTANS P J,LORETTO M H,et al.The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti 5331S[J].Acta Metall,1988,36(3):507-515.
[9] WILLIAMS J C,BAGGERLY R G,PATON N E.Deformation behavior of HCP Ti-Al alloy single crystals[J].Metall Mater Trans A,2002,33:837-850.
[10] RAMACHANDRA C,SINGH V.Silicide precipitation in alloy Ti-6Al-5Zr-0.5Mo-0.25Si[J].Metall Trans A,1982,13:771-775.
[11] FLOWER H M,SWANN P R,WEST R F.Silicide precipitation in the Ti-Zr-Al-Si system[J].Metall Trans A,1971,2:3289-3297.
[12] SINGH A K,ROY T,RAMACHANDRA C.Microstructural stability on aging of an α+β titanium alloy:Ti-6Al-1.6Zr-3.3Mo-0.30Si[J].Metall Mater Trans A,1996,27:1167-1173.
[13] HAYES R W,VISWANATHAN G B,MILLS M J.Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo:I.the effect of nickel on creep deformation and microstructure[J].Acta Mater,2002,50:4953-4963.
[14] ES-SOUNI M.Primary,secondary and anelastic creep of a high temperature near α-Ti alloy Ti6242Si[J].Materials Characte-rizations,2000,45:153-164.
[15] ES-SOUNI M.Creep deformation behavior of three high-temperature near α-Ti alloys:IMI834,IMI829,and IMI685[J].Metall Mater Trans A,2001,32:285-293.
[16] RHEE S I,NAM S W,HAGIWARA M.Effect of TiBp particle reinforcement on the creep resistance of near α titanium alloy made by blended elemental powder metallurgy[J].Journal of Alloys and Compounds,2003,359:186-192.
[17] K(O)PPERS M,HERZIG C,FRIESEL M,et al.Intrinsic self-diffusion and substitutional Al diffusion in α-Ti[J].Acta Mater,1997,45:4181-4191.
[18] MISHIN Y,HERZIG C.Diffusion in the Ti-Al system[J].Acta Mater,2000,48:589-623.
[19] NAKAJIMA H,KOIWA M.Diffusion of iron,cobalt and nickel in α-titanium[A].Ti'84:Science and Technology[C].Munich,Germany:Deutsche Gesellschaft Für Metallkunde e.V.,1985.1759-1766.
[20] ES-SOUNI M.Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti-5.8Al-4.0Sn-3.5Zr-0.7Nb-0.35Si-0.06C(Timetal 834) Part I.primary and steady-state creep[J].Materials Characterizations,2001,46:365-379.
[21] 冯端.金属物理学第一卷,结构与缺陷[M].北京:科学出版社,1998.540.
[22] NAKAJIMA H,KOIWA M.Diffusion in titanium[J].ISIJ International,1991,31(8):757-766.
[23] NAKAJIMA H,OGASAWARA K,YAMAGUCHI S,et al.Diffusion of chromium in α-titanium and its alloys[J].Mater Trans JIM,1990,31(4):249-254.
[24] VISWANATHAN G B,KARTHIKEYAN S,HAYES R W,et al.Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo:II.mechanisms of deformation[J].Acta Mater,2002,50:4965-4980.
[25] BLENKINSOP P A,NEAL D F.High temperature titanium alloys:the metallurgical understanding,development and achievements of conventional alloys[A].Metallurgical and Technology of Practical Titanium Alloys[C].Chiba,Japan:Metals & Materials Society,1994.19-27.
[26] RUSSO P A,WOOD J R.Influence of Ni and Fe on the creep of beta annealed Ti-6242S[A].Ti'95:Science and Technology[C].Birmingham,UK:The Institute of Materials,1996.1075-1082.
[27] PARADKAR A G,RAO A V,GOGIA A K.Effect of microalloying in a near α titanium alloy[J].Trans Indian Inst Met,2000,53(3):231-242.
[28] XU D S,HU Q M,LU J M,et al.Point defects and mechanical behavior of titanium alloys and intermetallic compounds[A].Third Conference of the Asian Consortium for Computational Materials Science(ACCMS-3)[C].Beijing:Chinese Academy of Science,2006.220-227.
[29] 莫畏.钛[M].北京:冶金工业出版社,2008.
[30] MISHRA H,GHOSAL P,NANDY T K,et al.Influence of Fe and Ni on creep of near α-Ti alloy IMI834[J].Mater Sci Eng A,2005,399:222-231.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}